Dhawan Manik, Selvaraja Sudarshan, Duan Zhong-Hui
Department of Computer Science, University of Akron, Akron, 44325 OH, USA.
Int J Bioinform Res Appl. 2010;6(4):344-52. doi: 10.1504/IJBRA.2010.035998.
In this study, we develop a two-class classification system based on a committee of k-Nearest Neighbour (kNN) classifiers. The system includes a sequence of simple data preprocessing steps. Each committee consists of 5 kNN classifiers of different architectures. Each classifier on the committee takes in a different set of features. The classification system is then applied to a set of microarray gene expression profiles from leukaemia patients. We show that the system can be effectively used for classifying microarray gene expression data. The results demonstrate the committee approach consistently outperforms individual kNN classifiers in terms of both classification accuracy and stability.
在本研究中,我们基于k近邻(kNN)分类器委员会开发了一种二类分类系统。该系统包括一系列简单的数据预处理步骤。每个委员会由5个不同架构的kNN分类器组成。委员会中的每个分类器采用不同的特征集。然后将该分类系统应用于一组白血病患者的微阵列基因表达谱。我们表明该系统可有效地用于对微阵列基因表达数据进行分类。结果表明,在分类准确性和稳定性方面,委员会方法始终优于单个kNN分类器。