Suppr超能文献

用放射性金属对生物分子进行微流控标记,用于核医学。

Microfluidic labeling of biomolecules with radiometals for use in nuclear medicine.

机构信息

Institute for Genomic Biology, University of Illinois at Urbana Champaign, 1206 W. Gregory Dr., Urbana, IL 61801, USA.

出版信息

Lab Chip. 2010 Dec 21;10(24):3387-96. doi: 10.1039/c0lc00162g. Epub 2010 Oct 12.

Abstract

Radiometal-based radiopharmaceuticals, used as imaging and therapeutic agents in nuclear medicine, consist of a radiometal that is bound to a targeting biomolecule (BM) using a bifunctional chelator (BFC). Conventional, macroscale radiolabeling methods use an excess of the BFC-BM conjugate (ligand) to achieve high radiolabeling yields. Subsequently, to achieve maximal specific activity (minimal amount of unlabeled ligand), extensive chromatographic purification is required to remove unlabeled ligand, often resulting in longer synthesis times and loss of imaging sensitivity due to radioactive decay. Here we describe a microreactor that overcomes the above issues through integration of efficient mixing and heating strategies while working with small volumes of concentrated reagents. As a model reaction, we radiolabel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated to the peptide cyclo(Arg-Gly-Asp-DPhe-Lys) with (64)Cu(2+). We show that the microreactor (made from polydimethylsiloxane and glass) can withstand 260 mCi of activity over 720 hours and retains only minimal amounts of (64)Cu(2+) (<5%) upon repeated use. A direct comparison between the radiolabeling yields obtained using the microreactor and conventional radiolabeling methods shows that improved mixing and heat transfer in the microreactor leads to higher yields for identical reaction conditions. Most importantly, by using small volumes (~10 µL) of concentrated solutions of reagents (>50 µM), yields of over 90% can be achieved in the microreactor when using a 1:1 stoichiometry of radiometal to BFC-BM. These high yields eliminate the need for use of excess amounts of often precious BM and obviate the need for a chromatographic purification process to remove unlabeled ligand. The results reported here demonstrate the potential of microreactor technology to improve the production of patient-tailored doses of radiometal-based radiopharmaceuticals in the clinic.

摘要

基于放射性金属的放射性药物,作为核医学中的成像和治疗剂,由放射性金属与靶向生物分子(BM)结合使用双功能螯合剂(BFC)组成。传统的、宏观的放射性标记方法使用过量的 BFC-BM 缀合物(配体)来实现高放射性标记产率。随后,为了达到最大的比活度(最小量的未标记配体),需要进行广泛的色谱纯化以去除未标记的配体,这通常会导致更长的合成时间和由于放射性衰变而导致的成像灵敏度损失。在这里,我们描述了一种微反应器,该微反应器通过集成高效混合和加热策略来克服上述问题,同时处理小体积的浓缩试剂。作为模型反应,我们用(64)Cu(2+)标记与肽环(Arg-Gly-Asp-DPhe-Lys)偶联的 1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸(DOTA)。我们表明,微反应器(由聚二甲基硅氧烷和玻璃制成)可以承受 260 mCi 的活性超过 720 小时,并且在重复使用时仅保留最小量的(64)Cu(2+)(<5%)。通过微反应器与传统放射性标记方法获得的放射性标记产率的直接比较表明,在相同的反应条件下,微反应器中改进的混合和传热导致更高的产率。最重要的是,通过使用小体积(~10 µL)的浓缩试剂溶液(>50 µM),当使用放射性金属与 BFC-BM 的 1:1 化学计量比时,微反应器中可以实现超过 90%的产率。这些高产率消除了使用通常珍贵的 BM 的过量用量的需要,并避免了需要进行色谱纯化以去除未标记的配体的过程。这里报道的结果表明,微反应器技术有可能改善临床中定制放射性金属放射性药物的患者剂量的生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验