Radiological Sciences Division, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Blvd., St. Louis, MO 63110, USA.
Nucl Med Biol. 2013 Jan;40(1):42-51. doi: 10.1016/j.nucmedbio.2012.08.012. Epub 2012 Oct 15.
A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals.
The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both ⁶⁴Cu and ⁶⁸Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time.
Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with ⁶⁴Cu/⁶⁸Ga using the microreactor, which demonstrates the ability to label both small and large molecules.
A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions.
为了用 PET 放射性金属标记双功能螯合剂共轭生物分子(BFC-BM),设计、制造和测试了一种强大、通用和紧凑的微反应器。
使用开发的微反应器分别用 64Cu 和 68Ga 标记与环(Arg-Gly-Asp-DPhe-Lys)肽缀合的螯合剂 1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸(DOTA)或 1,4,7-三氮杂环壬烷-1,4,7-三乙酸(NOTA)。通过改变温度、浓度和停留时间来优化微反应器的标记条件。
在相同的标记条件下,与传统方法相比,微反应器方法具有更高的标记产率和更高的重现性,这是由于微尺度上增强了质量和热传递。更重要的是,在微反应器中,以双功能螯合剂生物分子缀合物(BFC-BM)与放射性金属的 1:1 化学计量比,实现了超过 90%的放射性标记产率(放射性金属的掺入),这可能避免了使用传统方法制备放射性配体时通常需要进行广泛的色谱纯化以去除大量未标记的生物分子。此外,使用微反应器观察到 DOTA 功能化 BSA 蛋白(牛血清白蛋白)的放射性标记产率更高,这表明它能够标记小分子和大分子。
开发并验证了一种强大、可靠、紧凑的微反应器,能够用常见螯合剂螯合放射性金属。根据我们的放射性标记结果,所报道的微流控方法总体上优于传统的放射合成方法,是在水溶液中对常用 BFC-BM 进行放射性金属标记的有前途的技术。