Cardiology and Center of Excellence on Aging, G. d'Annunzio University, Chieti, Italy.
Int J Immunopathol Pharmacol. 2010 Jul-Sep;23(3):755-65. doi: 10.1177/039463201002300309.
Since diabetic hyperglycaemia causes hyperosmolarity, we investigated the contribution of hyperosmolarity in the proinflammatory endothelial effects of hyperglycemia, and investigated the mechanisms involved. Human aortic endothelial cells (HAEC) were incubated for short-term (1-3 days) or long-term (1-2 weeks) exposures to 5.5 mmol/L glucose (normoglycemia, basal), high glucose (25 and 45 mmol/L, HG), or a hyperosmolar control (mannitol 25 and 45 mmol/L, HM), in the presence or absence of the aquaporin-1 (AQP1) inhibitor dimethylsulfoxide (DMSO), the Na+/H+ exchanger 1 (NHE-1) inhibitor cariporide (CA), the protein kinase C (PKC) inhibitor calphostin C or the PKCbeta isoform inhibitor LY379196 (LY). Both short- and long-term exposures to HG and HM decreased the expression of the active, phosphorylated form of endothelial nitric oxide synthase (Ser1146-eNOS) and, in parallel, increased vascular cell adhesion molecule(VCAM)-1 protein at immunoblotting. After 24 h incubation with HG/HM, we observed a significant similar and concentration-dependent enhancement of AQP1 expression. DMSO and CA inhibited hyperosmolarity-induced VCAM-1 expressions, while increasing nitrite levels and Ser1146-eNOS expression. Gene silencing by small interfering RNA reduced the expression of AQP1, and suppressed HG and HM-stimulated VCAM-1 expression. Calphostin C and LY blunted hyperosmolarity-induced VCAM-1 expression, while increasing the expression of Ser1146-eNOS and nitrite production. HG decreases eNOS activation and induces total VCAM-1 expression in HAEC through a hyperosmolar mechanism. These effects are mediated by activation of the water channels AQP1 and NHE-1, and a PKCbeta-mediated intracellular signaling pathway. Targeting osmosignaling pathways may represent a novel strategy to reduce vascular effects of hyperglycemia.
由于糖尿病高血糖导致高渗透压,我们研究了高渗透压对高血糖引起的炎症内皮效应的贡献,并研究了相关机制。将人主动脉内皮细胞 (HAEC) 在短期(1-3 天)或长期(1-2 周)暴露于 5.5 mmol/L 葡萄糖(正常血糖,基础)、高葡萄糖(25 和 45 mmol/L,HG)或高渗透压对照物(甘露醇 25 和 45 mmol/L,HM)下孵育,同时存在或不存在水通道蛋白-1 (AQP1) 抑制剂二甲基亚砜 (DMSO)、钠离子/氢离子交换器 1 (NHE-1) 抑制剂 cariporide (CA)、蛋白激酶 C (PKC) 抑制剂 calphostin C 或 PKCβ同工型抑制剂 LY379196 (LY)。HG 和 HM 的短期和长期暴露均降低了内皮型一氧化氮合酶(Ser1146-eNOS)的活性、磷酸化形式的表达,并在免疫印迹中平行增加了血管细胞粘附分子 (VCAM)-1 蛋白。用 HG/HM 孵育 24 h 后,我们观察到 AQP1 表达显著增加,呈浓度依赖性。DMSO 和 CA 抑制高渗透压诱导的 VCAM-1 表达,同时增加亚硝酸盐水平和 Ser1146-eNOS 表达。小干扰 RNA 基因沉默降低了 AQP1 的表达,并抑制了 HG 和 HM 刺激的 VCAM-1 表达。Calphostin C 和 LY 抑制高渗透压诱导的 VCAM-1 表达,同时增加 Ser1146-eNOS 的表达和亚硝酸盐的产生。HG 通过高渗透压机制降低 eNOS 激活并诱导 HAEC 中总 VCAM-1 的表达。这些作用是通过水通道 AQP1 和 NHE-1 的激活以及 PKCβ 介导的细胞内信号通路介导的。针对渗透信号通路可能是减少高血糖血管作用的一种新策略。