Institute of Soil Science, University of Hamburg, Allende-Platz 2, 20146 Hamburg, Germany.
Waste Manag. 2011 May;31(5):926-34. doi: 10.1016/j.wasman.2010.09.013. Epub 2010 Oct 12.
In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH(4)m(-2)h(-1)(.) Considering the current gas production rate of 0.03 g CH(4)m(-2)h(-1), the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.
为了设计旨在增强垃圾填埋场甲烷微生物氧化的生物覆盖物的设计标准,了解影响填埋覆盖土壤中气体迁移和甲烷氧化的因素至关重要。在德国西北部的一个旧城市固体废物填埋场中,在 16 米网格的 40 个位置调查了土壤气体浓度(10、40、90 厘米深度)、表土甲烷氧化能力和土壤特性。由于土壤特性决定了气体流动模式,因此假设土壤气体组成的可变性和随后的甲烷氧化活性将与土壤特性的可变性相对应。甲烷氧化活性具有很高的空间变异性,其值在 0.17 至 9.80 g CH(4)m(-2)h(-1)之间。考虑到当前的气体产生速率为 0.03 g CH(4)m(-2)h(-1),所有采样位置的氧化能力明显超过了覆盖层的通量,可以被视为减轻甲烷通量的有效手段。覆盖层中的甲烷浓度具有很高的空间异质性,其值在 0.01 至 0.32 体积%(10 厘米深度)、22.52 体积%(40 厘米)和 36.85 体积%(90 厘米)之间。暴露在甲烷中会提高氧化能力,这可以通过与 90 厘米深处甲烷浓度增加的统计相关性来证明。甲烷氧化能力还受到甲烷氧化细菌 pH 最佳值和养分可用性的影响,随着 pH 值向中性降低而增加,并且随着可溶离子浓度的增加而增加。土壤甲烷和二氧化碳浓度随着覆盖物流动阻力的降低而增加,这表现为土壤特性的减少体密度、空气容量和相对地面水平的增加。