Suppr超能文献

通过植被改善关键细粒垃圾填埋场覆盖材料的曝气,以提高微生物甲烷氧化效率。

Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency.

机构信息

University of Technology Darmstadt, Institute IWAR, Department of Waste Management, Petersenstrasse 13, 64287 Darmstadt, Germany.

出版信息

Waste Manag. 2011 May;31(5):854-63. doi: 10.1016/j.wasman.2010.11.009. Epub 2010 Dec 18.

Abstract

The natural methane oxidation potential of methanotrophic bacteria in landfill top covers is a sustainable and inexpensive method to reduce methane emissions to the atmosphere. Basically, the activity of methanotrophic bacteria is limited by the availability of oxygen in the soil. A column study was carried out to determine whether and to what extent vegetation can improve soil aeration and maintain the methane oxidation process. Tested soils were clayey silt and mature compost. The first soil is critical in light of surface crusting due to vertical erosion of an integral part of fine-grained material, blocking pores required for the gas exchange. The second soil, mature compost, is known for its good methane oxidation characteristics, due to high air-filled porosity, favorable water retention capacity and high nutrient supply. The assortment of plants consisted of a grass mixture, Canadian goldenrod and a mixture of leguminous plants. The compost offered an excellent methane oxidation potential of 100% up to a CH(4)-input of 5.6l CH(4)m(-2)h(-1). Whereas the oxidation potential was strongly diminished in the bare control column filled with clayey silt even at low CH(4)-loads. By contrast the planted clayey silt showed an increased methane oxidation potential compared to the bare column. The spreading root system forms secondary macro-pores, and hence amplifies the air diffusivity and sustain the oxygen supply to the methanotrophic bacteria. Water is produced during methane oxidation, causing leachate. Vegetation reduces the leachate by evapotranspiration. Furthermore, leguminous plants support the enrichment of soil with nitrogen compounds and thus improving the methane oxidation process. In conclusion, vegetation is relevant for the increase of oxygen diffusion into the soil and subsequently enhances effective methane oxidation in landfill cover soils.

摘要

在垃圾填埋场覆盖层中,利用产甲烷菌的自然甲烷氧化潜力是一种可持续且经济实惠的减少甲烷向大气排放的方法。从根本上讲,产甲烷菌的活性受土壤中氧气的可用性限制。进行了一项柱研究,以确定植被是否以及在何种程度上可以改善土壤通气并维持甲烷氧化过程。测试的土壤为粉质壤土和成熟堆肥。第一种土壤由于细粒物质的垂直侵蚀而形成表面结壳,从而限制了气体交换所需的孔隙,因此至关重要。第二种土壤,成熟堆肥,由于充气孔隙度高、保水能力好和养分供应高,以其良好的甲烷氧化特性而闻名。所选植物包括草混合种、加拿大一枝黄花和豆科植物混合物。堆肥提供了极好的甲烷氧化潜力,在输入 5.6l CH(4)m(-2)h(-1)的情况下,甲烷氧化潜力达到 100%。而在仅填充粉质壤土的裸对照柱中,即使在低 CH(4)负荷下,氧化潜力也大大降低。相比之下,种植粉质壤土的柱比裸柱显示出更高的甲烷氧化潜力。扩展的根系形成次生大孔,从而放大空气扩散率并维持产甲烷菌的氧气供应。甲烷氧化过程中会产生水,导致渗滤液。植被通过蒸腾作用减少渗滤液。此外,豆科植物支持土壤中氮化合物的富集,从而改善甲烷氧化过程。总之,植被对于增加氧气向土壤中的扩散以及随后增强垃圾填埋场覆盖土壤中的有效甲烷氧化具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验