Suppr超能文献

薄棘皮质神经元亚群保留了刺激起始的外周编码。

Subset of thin spike cortical neurons preserve the peripheral encoding of stimulus onsets.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

J Neurophysiol. 2010 Dec;104(6):3588-99. doi: 10.1152/jn.00295.2010. Epub 2010 Oct 13.

Abstract

An important question in auditory neuroscience concerns how the neural representation of sound features changes from the periphery to the cortex. Here we focused on the encoding of sound onsets and we used a modeling approach to explore the degree to which auditory cortical neurons follow a similar envelope integration mechanism found at the auditory periphery. Our "forward" model was able to predict relatively accurately the timing of first spikes evoked by natural communication calls in the auditory cortex of awake, head-restrained mice, but only for a subset of cortical neurons. These neurons were systematically different in their encoding of the calls, exhibiting less call selectivity, shorter latency, greater precision, and more transient spiking compared with the same factors of their poorly predicted counterparts. Importantly, neurons that fell into this best-predicted group all had thin spike waveforms, suggestive of suspected interneurons conveying feedforward inhibition. Indeed, our population of call-excited thin spike neurons had significantly higher spontaneous rates and larger frequency tuning bandwidths than those of thick spike neurons. Thus the fidelity of our model's first spike predictions segregated neurons into one earlier responding subset, potentially dominated by suspected interneurons, which preserved a peripheral mechanism for encoding sound onsets and another longer latency subset that reflected higher, likely centrally constructed nonlinearities. These results therefore provide support for the hypothesis that physiologically distinct subclasses of neurons in the auditory cortex may contribute hierarchically to the representation of natural stimuli.

摘要

听觉神经科学中的一个重要问题是,声音特征的神经表示如何从外围向皮层转变。在这里,我们专注于声音起始的编码,并使用建模方法来探索听觉皮层神经元在多大程度上遵循在外周发现的类似包络整合机制。我们的“前向”模型能够相对准确地预测在清醒、头部固定的小鼠听觉皮层中自然通讯呼叫引发的第一个尖峰的时间,但仅适用于皮质神经元的一部分。与预测不佳的神经元相比,这些神经元在其编码方面存在系统差异,表现出较少的呼叫选择性、较短的潜伏期、更高的精度和更短暂的尖峰发放。重要的是,属于最佳预测组的神经元的尖峰波形都很细,提示它们可能是传递前馈抑制的中间神经元。事实上,我们的呼叫兴奋的薄尖峰神经元群体的自发发放率明显高于厚尖峰神经元,且频率调谐带宽更大。因此,我们的模型第一尖峰预测的准确性将神经元分为一个响应更快的子集,可能主要由中间神经元组成,它们保留了用于编码声音起始的外围机制,以及另一个潜伏期更长的子集,反映了更高的、可能是中枢构建的非线性。因此,这些结果支持了这样一种假设,即听觉皮层中具有不同生理特性的神经元亚类可能分层地对自然刺激的表示做出贡献。

相似文献

1
Subset of thin spike cortical neurons preserve the peripheral encoding of stimulus onsets.
J Neurophysiol. 2010 Dec;104(6):3588-99. doi: 10.1152/jn.00295.2010. Epub 2010 Oct 13.
2
Encoding of sound envelope transients in the auditory cortex of juvenile rats and adult rats.
Int J Dev Neurosci. 2016 Feb;48:50-7. doi: 10.1016/j.ijdevneu.2015.11.004. Epub 2015 Nov 26.
3
Information content of auditory cortical responses to time-varying acoustic stimuli.
J Neurophysiol. 2004 Jan;91(1):301-13. doi: 10.1152/jn.00022.2003. Epub 2003 Oct 1.
5
Cortical processing of dynamic sound envelope transitions.
J Neurosci. 2010 Dec 8;30(49):16741-54. doi: 10.1523/JNEUROSCI.2016-10.2010.
6
Auditory cortical onset responses revisited. I. First-spike timing.
J Neurophysiol. 1997 May;77(5):2616-41. doi: 10.1152/jn.1997.77.5.2616.
7
Temporally precise population coding of dynamic sounds by auditory cortex.
J Neurophysiol. 2021 Jul 1;126(1):148-169. doi: 10.1152/jn.00709.2020. Epub 2021 Jun 2.
8
Online stimulus optimization rapidly reveals multidimensional selectivity in auditory cortical neurons.
J Neurosci. 2014 Jul 2;34(27):8963-75. doi: 10.1523/JNEUROSCI.0260-14.2014.
9
Functional congruity in local auditory cortical microcircuits.
Neuroscience. 2016 Mar 1;316:402-19. doi: 10.1016/j.neuroscience.2015.12.057. Epub 2016 Jan 5.

引用本文的文献

1
Juxtacellular Labeling of Stellate, Disk and Basket Neurons in the Central Nucleus of the Guinea Pig Inferior Colliculus.
Front Neural Circuits. 2021 Nov 1;15:721015. doi: 10.3389/fncir.2021.721015. eCollection 2021.
2
Response Properties of Interneurons and Pyramidal Neurons in Macaque MSTd and VPS Areas During Self-Motion.
Front Neural Circuits. 2018 Nov 23;12:105. doi: 10.3389/fncir.2018.00105. eCollection 2018.
3
Contextual Modulation of Vocal Behavior in Mouse: Newly Identified 12 kHz "Mid-Frequency" Vocalization Emitted during Restraint.
Front Behav Neurosci. 2016 Mar 9;10:38. doi: 10.3389/fnbeh.2016.00038. eCollection 2016.
4
Stable encoding of sounds over a broad range of statistical parameters in the auditory cortex.
Eur J Neurosci. 2016 Mar;43(6):751-64. doi: 10.1111/ejn.13144. Epub 2016 Jan 20.
5
Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons.
PLoS Biol. 2015 Dec 2;13(12):e1002308. doi: 10.1371/journal.pbio.1002308. eCollection 2015 Dec.
6
Diverse cortical codes for scene segmentation in primate auditory cortex.
J Neurophysiol. 2015 Apr 1;113(7):2934-52. doi: 10.1152/jn.01054.2014. Epub 2015 Feb 18.
8
Auditory processing for contrast enhancement of salient communication vocalizations.
Proc Meet Acoust. 2013 Jun 2;19(1). doi: 10.1121/1.4799206.
9
A role for maternal physiological state in preserving auditory cortical plasticity for salient infant calls.
Neuroscience. 2013 Sep 5;247:102-16. doi: 10.1016/j.neuroscience.2013.05.020. Epub 2013 May 21.
10
Encoding of ultrasonic vocalizations in the auditory cortex.
J Neurophysiol. 2013 Apr;109(7):1912-27. doi: 10.1152/jn.00483.2012. Epub 2013 Jan 16.

本文引用的文献

1
A physiologically based model for temporal envelope encoding in human primary auditory cortex.
Hear Res. 2010 Sep 1;268(1-2):133-44. doi: 10.1016/j.heares.2010.05.014. Epub 2010 Jun 1.
2
Metabolic cost as a unifying principle governing neuronal biophysics.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12329-34. doi: 10.1073/pnas.0914886107. Epub 2010 Jun 23.
3
Sparse and powerful cortical spikes.
Curr Opin Neurobiol. 2010 Jun;20(3):306-12. doi: 10.1016/j.conb.2010.03.006. Epub 2010 Apr 17.
4
First-spike latency in the presence of spontaneous activity.
Neural Comput. 2010 Jul;22(7):1675-97. doi: 10.1162/neco.2010.11-09-1118.
5
Hierarchical computation in the canonical auditory cortical circuit.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21894-9. doi: 10.1073/pnas.0908383106. Epub 2009 Nov 16.
6
Laminar diversity of dynamic sound processing in cat primary auditory cortex.
J Neurophysiol. 2010 Jan;103(1):192-205. doi: 10.1152/jn.00624.2009. Epub 2009 Oct 28.
7
Population coding of tone stimuli in auditory cortex: dynamic rate vector analysis.
Eur J Neurosci. 2009 Nov;30(9):1767-78. doi: 10.1111/j.1460-9568.2009.06954.x. Epub 2009 Oct 14.
8
Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex.
J Neurosci. 2009 Sep 9;29(36):11192-202. doi: 10.1523/JNEUROSCI.1286-09.2009.
9
Inhibitory plasticity in a lateral band improves cortical detection of natural vocalizations.
Neuron. 2009 Jun 11;62(5):705-16. doi: 10.1016/j.neuron.2009.05.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验