Suppr超能文献

甘氨酸甜菜碱保护植物免受非生物胁迫:机制和生物技术应用。

Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications.

机构信息

Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR 97331, USA National Institute for Basic Biology, Okazaki 444-8585, Japan.

出版信息

Plant Cell Environ. 2011 Jan;34(1):1-20. doi: 10.1111/j.1365-3040.2010.02232.x. Epub 2010 Oct 15.

Abstract

Various compatible solutes enable plants to tolerate abiotic stress, and glycinebetaine (GB) is one of the most-studied among such solutes. Early research on GB focused on the maintenance of cellular osmotic potential in plant cells. Subsequent genetically engineered synthesis of GB-biosynthetic enzymes and studies of transgenic plants demonstrated that accumulation of GB increases tolerance of plants to various abiotic stresses at all stages of their life cycle. Such GB-accumulating plants exhibit various advantageous traits, such as enlarged fruits and flowers and/or increased seed number under non-stress conditions. However, levels of GB in transgenic GB-accumulating plants are relatively low being, generally, in the millimolar range. Nonetheless, these low levels of GB confer considerable tolerance to various stresses, without necessarily contributing significantly to cellular osmotic potential. Moreover, low levels of GB, applied exogenously or generated by transgenes for GB biosynthesis, can induce the expression of certain stress-responsive genes, including those for enzymes that scavenge reactive oxygen species. Thus, transgenic approaches that increase tolerance to abiotic stress have enhanced our understanding of mechanisms that protect plants against such stress.

摘要

各种相容性溶质使植物能够耐受非生物胁迫,而甘氨酸甜菜碱 (GB) 是此类溶质中研究最多的一种。早期关于 GB 的研究主要集中在维持植物细胞的细胞渗透势上。随后通过基因工程合成 GB 生物合成酶并对转基因植物进行研究表明,GB 的积累增加了植物在其生命周期的各个阶段对各种非生物胁迫的耐受性。在非胁迫条件下,这种积累 GB 的植物表现出各种有利的特性,例如果实和花朵增大和/或种子数量增加。然而,转基因 GB 积累植物中的 GB 水平相对较低,通常在毫摩尔范围内。尽管如此,这些低水平的 GB 赋予了植物对各种胁迫的相当大的耐受性,而不一定对细胞渗透势有显著贡献。此外,外源施加或通过 GB 生物合成的转基因产生的低水平的 GB 可以诱导某些胁迫响应基因的表达,包括那些用于清除活性氧的酶的基因。因此,提高对非生物胁迫耐受性的转基因方法增强了我们对保护植物免受这种胁迫的机制的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验