Giraud Eric, Lavergne Jérôme, Verméglio André
Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, TA A-82/J, Campus de Baillarguet, Montpellier Cedex 5, France.
Methods Enzymol. 2010;471:135-59. doi: 10.1016/S0076-6879(10)71009-0. Epub 2010 Mar 1.
Bacteria detect environmental changes, thanks to two-component signal-transduction systems, composed, in general, of a sensor coupled to a histidine kinase and a DNA binding response regulator. Anoxygenic photosynthetic bacteria like Rhodopseudomonas (Rps.) palustris, possess a highly versatile metabolism and can grow via photosynthesis using light energy or via respiration through oxygen consumption. For photosynthetic bacteria, detecting changes in light quality or quantity, or in oxygen concentration, is therefore of prime importance for adjusting their metabolism for optimal development. A central role is played by bacteriophytochromes for light detection and initiation of regulatory responses. The switch of these chromoproteins between two photointerconvertible forms is the first event in the light-regulated cascade. This chapter describes in vitro and in vivo methods that have been successfully used to investigate the bacteriophytochrome dependent light regulation pathways, in several strains of Rps. palustris and Bradyrhizobium. These approaches range from biochemical and biophysical methods to genetic techniques. Such multiple approaches are indispensable for understanding these complex light-regulated pathway. In a first step, bacteriophytochromes and associated response regulators are overexpressed in Escherichia coli and purified. The spectral and kinetic properties of the two photointerconvertible forms of the purified bacteriophytochromes are then determined by biophysical approaches. Original spectral and kinetic properties found in some of the bacteriophytochromes that we studied necessitated the development of new methods for computing the spectra of the pure forms and the photoconversion yields. In vitro biochemical approaches help to assess the histidine kinase activity of bacteriophytochromes depending on light conditions, the phosphotransfer to response regulators and their affinity to promoter DNA sequences. Finally, gene inactivation tests the importance of specific genes in photosynthesis regulation under particular light and oxygen tension growth conditions. The methods described in this chapter are not restricted to the study of the light-transduction pathways of Rps. palustris and Bradyrhizobium strains but are applicable to the understanding of any bacterial light-regulatory system.
细菌能够检测环境变化,这要归功于双组分信号转导系统,该系统通常由与组氨酸激酶偶联的传感器和DNA结合反应调节因子组成。像沼泽红假单胞菌(Rps. palustris)这样的不产氧光合细菌具有高度多样的代谢方式,能够通过利用光能进行光合作用或通过消耗氧气进行呼吸作用来生长。因此,对于光合细菌而言,检测光质或光量的变化,或者氧气浓度的变化,对于调整其代谢以实现最佳生长发育至关重要。细菌光敏色素在光检测和调节反应的启动中起着核心作用。这些色素蛋白在两种光可互变形式之间的转换是光调节级联反应中的首个事件。本章描述了已成功用于研究几种沼泽红假单胞菌和慢生根瘤菌菌株中依赖细菌光敏色素的光调节途径的体外和体内方法。这些方法涵盖了从生化和生物物理方法到基因技术。这种多种方法对于理解这些复杂的光调节途径是必不可少的。第一步,在大肠杆菌中过表达细菌光敏色素和相关的反应调节因子并进行纯化。然后通过生物物理方法确定纯化的细菌光敏色素两种光可互变形式的光谱和动力学特性。我们研究的一些细菌光敏色素中发现的原始光谱和动力学特性促使我们开发新的方法来计算纯形式的光谱和光转换产率。体外生化方法有助于评估细菌光敏色素在不同光照条件下的组氨酸激酶活性、向反应调节因子的磷酸转移以及它们对启动子DNA序列的亲和力。最后,基因失活测试特定基因在特定光照和氧气张力生长条件下光合作用调节中的重要性。本章所述方法不仅限于研究沼泽红假单胞菌和慢生根瘤菌菌株的光转导途径,还适用于理解任何细菌的光调节系统。