Center for Spintronics and Quantum Computation, University of California, Santa Barbara, CA 93106, USA.
Science. 2010 Nov 26;330(6008):1212-5. doi: 10.1126/science.1196436. Epub 2010 Oct 14.
The exceptional spin coherence of nitrogen-vacancy centers in diamond motivates their function in emerging quantum technologies. Traditionally, the spin state of individual centers is measured optically and destructively. We demonstrate dispersive, single-spin coupling to light for both nondestructive spin measurement, through the Faraday effect, and coherent spin manipulation, through the optical Stark effect. These interactions can enable the coherent exchange of quantum information between single nitrogen-vacancy spins and light, facilitating coherent measurement, control, and entanglement that is scalable over large distances.
金刚石中的氮空位中心具有非凡的自旋相干性,这促使它们在新兴的量子技术中发挥作用。传统上,单个中心的自旋状态是通过光学方法进行破坏性测量的。我们通过法拉第效应证明了光与单个自旋的分散性单自旋耦合,从而实现了非破坏性的自旋测量,通过光学斯塔克效应实现了相干的自旋操纵。这些相互作用可以使单氮空位自旋与光之间的量子信息进行相干交换,从而实现相干测量、控制和纠缠,并且可以在很大的距离上进行扩展。