Suppr超能文献

能面,化学势,自旋极化密度泛函理论中的 Kohn-Sham 能量。

Energy surface, chemical potentials, Kohn-Sham energies in spin-polarized density functional theory.

机构信息

Department of General Chemistry (ALGC), Member of the QCMM Alliance Ghent-Brussels, Free University of Brussels (VUB), Pleinlaan 2, Brussel 1050, Belgium.

出版信息

J Chem Phys. 2010 Oct 14;133(14):144105. doi: 10.1063/1.3467898.

Abstract

On the basis of the zero-temperature grand canonical ensemble generalization of the energy E[N,N(s),v,B] for fractional particle N and spin N(s) numbers, the energy surface over the (N,N(s)) plane is displayed and analyzed in the case of homogeneous external magnetic fields B(r). The (negative of the) left-/right-side derivatives of the energy with respect to N, N(↑), and N(↓) give the fixed-N(s), spin-up, and spin-down ionization potentials/electron affinities, respectively, while the derivative of E[N,N(s),v,B] with respect to N(s) gives the (signed) half excitation energy to the lowest-lying state with N(s) increased (or decreased) by 2. The highest occupied and lowest unoccupied Kohn-Sham spin-orbital energies are identified as the corresponding spin-up and spin-down ionization potentials and electron affinities. The excitation energies to the lowest-lying states with N(s)±2 can be obtained as the differences between the lowest unoccupied and the opposite-spin highest occupied spin-orbital energies, if the (N,N(s)) representation of the Kohn-Sham spin-potentials is used. The cases where the convexity condition on the energy does not hold are also discussed. Finally, the discontinuities of the energy derivatives and the Kohn-Sham potential are analyzed and related.

摘要

基于分数粒子 N 和自旋 N(s)数的零温巨正则系综能量 E[N,N(s),v,B]的推广,在均匀外磁场 B(r)的情况下,展示并分析了 (N,N(s)) 平面上的能量表面。能量关于 N、N(↑)和 N(↓)的左/右侧导数分别给出了固定 N(s)、自旋向上和自旋向下的电离势/电子亲和势,而 E[N,N(s),v,B] 对 N(s)的导数给出了 N(s)增加(或减少)2 时最低能级的(有符号)半激发能。最高占据和最低未占据的 Kohn-Sham 自旋轨道能量被确定为相应的自旋向上和自旋向下的电离势和电子亲和势。如果使用 Kohn-Sham 自旋势的 (N,N(s)) 表示,则可以将 N(s)±2 的最低能级激发能作为最低未占据和相反自旋的最高占据自旋轨道能量之间的差值来获得。还讨论了能量凸性条件不成立的情况。最后,分析并关联了能量导数和 Kohn-Sham 势的不连续性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验