Suppr超能文献

具有分数电子数和自旋的多电子系统的系综基态:分段线性和平坦平面条件的推广。

Ensemble Ground State of a Many-Electron System with Fractional Electron Number and Spin: Piecewise-Linearity and Flat-Plane Condition Generalized.

作者信息

Goshen Yuli, Kraisler Eli

机构信息

Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel.

出版信息

J Phys Chem Lett. 2024 Mar 7;15(9):2337-2343. doi: 10.1021/acs.jpclett.3c03509. Epub 2024 Feb 22.

Abstract

Description of many-electron systems with a fractional electron number () and fractional spin () is of great importance in physical chemistry, solid-state physics, and materials science. In this Letter, we provide an exact description of the zero-temperature ensemble ground state of a general, finite, many-electron system and characterize the dependence of the energy and the spin-densities on both and , when the total spin is at its equilibrium value. We generalize the piecewise-linearity principle and the flat-plane condition and determine which pure states contribute to the ground-state ensemble. We find a new derivative discontinuity, which manifests for spin variation at a constant , as a jump in the Kohn-Sham potential. We identify a previously unknown degeneracy of the ground state, such that the total energy and density are unique, but the spin-densities are not. Our findings serve as a basis for development of advanced approximations in density functional theory and other many-electron methods.

摘要

对具有分数电子数()和分数自旋()的多电子系统的描述在物理化学、固态物理和材料科学中具有极其重要的意义。在本信函中,我们给出了一个一般的、有限的多电子系统在零温度系综基态的精确描述,并刻画了在总自旋处于其平衡值时,能量和自旋密度对和的依赖性。我们推广了分段线性原理和平平面条件,并确定了哪些纯态对基态系综有贡献。我们发现了一种新的导数不连续性,它表现为在常数下自旋变化时,科恩 - 沈势的跃变。我们识别出一种此前未知的基态简并性,使得总能量和密度是唯一的,但自旋密度并非如此。我们的发现为密度泛函理论及其他多电子方法中先进近似的发展奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eea2/10926161/1d059abea3ea/jz3c03509_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验