Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
J Chem Phys. 2010 Oct 14;133(14):144707. doi: 10.1063/1.3494041.
Analytical and numerical studies are carried out on the shapes of two-dimensional and axisymmetric pendant drops hanging under gravity from a solid surface. Drop shapes with both pinned and equilibrium contact angles are obtained naturally from a single boundary condition in the analytical energy optimization procedure. The numerical procedure also yields optimum energy shapes, satisfying Young's equation without the explicit imposition of a boundary condition at the plate. It is shown analytically that a static pendant two-dimensional drop can never be longer than 3.42 times the capillary length. A related finding is that a range of existing solutions for long two-dimensional drops correspond to unphysical drop shapes. Therefore, two-dimensional drops of small volume display only one static solution. In contrast, it is known that axisymmetric drops can display multiple solutions for a given volume. We demonstrate numerically that there is no limit to the height of multiple-lobed Kelvin drops, but the total volume is finite, with the volume of successive lobes forming a convergent series. The stability of such drops is in question, though. Drops of small volume can attain large heights. A bifurcation is found within the one-parameter space of Laplacian shapes, with a range of longer drops displaying a minimum in energy in the investigated space. Axisymmetric Kelvin drops exhibit an infinite number of bifurcations.
对受重力作用悬挂在固体表面下的二维和轴对称悬滴的形状进行了分析和数值研究。在分析能量优化过程中,从单一边界条件自然获得具有固定和平衡接触角的液滴形状。数值程序还产生最佳能量形状,满足杨氏方程,而无需在板上显式施加边界条件。分析表明,静态悬挂二维液滴的长度永远不可能超过毛细长度的 3.42 倍。一个相关的发现是,对于长的二维液滴,存在一系列现有解决方案对应于不合理的液滴形状。因此,小体积的二维液滴仅显示一个静态解决方案。相比之下,已知轴对称液滴可以针对给定体积显示多个解决方案。我们通过数值证明,多叶 Kelvin 液滴的高度没有限制,但总体积是有限的,连续叶的体积形成收敛级数。然而,这种液滴的稳定性存在问题。小体积的液滴可以达到较大的高度。在拉普拉斯形状的单参数空间中发现了分岔,在所研究的空间中,一系列较长的液滴在能量上显示出最小值。轴对称 Kelvin 液滴表现出无限数量的分岔。