Suppr超能文献

重力作用下圆锥基底上轴对称液滴的平衡与稳定性

Equilibrium and stability of axisymmetric drops on a conical substrate under gravity.

作者信息

Nurse A K, Colbert-Kelly S, Coriell S R, McFadden G B

机构信息

National Institute of Standards and Technology Gaithersburg, MD 20899.

出版信息

Phys Fluids (1994). 2015;27(8). doi: 10.1063/1.4927697.

Abstract

Motivated by recent investigations of toroidal tissue clusters that are observed to climb conical obstacles after self-assembly [Nurse et al., Journal of Applied Mechanics 79 (2012) 051013], we study a related problem of the determination of the equilibrium and stability of axisymmetric drops on a conical substrate in the presence of gravity. A variational principle is used to characterize equilibrium shapes that minimize surface energy and gravitational potential energy subject to a volume constraint, and the resulting Euler equation is solved numerically using an angle/arclength formulation. The resulting equilibria satisfy a Laplace-Young boundary condition that specifies the contact angle at the three-phase trijunction. The vertical position of the equilibrium drops on the cone is found to vary significantly with the dimensionless Bond number that represents the ratio of gravitational and capillary forces; a global force balance is used to examine the conditions that affect the drop positions. In particular, depending on the contact angle and the cone half-angle, we find that the vertical position of the drop can either increase ("the drop climbs the cone") or decrease due to a nominal increase in the gravitational force. Most of the equilibria correspond to upward-facing cones, and are analogous to sessile drops resting on a planar surface; however we also find equilibria that correspond to downward facing cones, that are instead analogous to pendant drops suspended vertically from a planar surface. The linear stability of the drops is determined by solving the eigenvalue problem associated with the second variation of the energy functional. The drops with positive Bond number are generally found to be unstable to non-axisymmetric perturbations that promote a tilting of the drop. Additional points of marginal stability are found that correspond to limit points of the axisymmetric base state. Drops that are far from the tip are subject to azimuthal instabilities with higher mode numbers that are analogous to the Rayleigh instability of a cylindrical interface. We have also found a range of completely stable solutions that correspond to small contact angles and cone half-angles.

摘要

受近期对环形组织簇的研究启发,这些组织簇在自组装后能爬上锥形障碍物[护士等人,《应用力学杂志》79 (2012) 051013],我们研究了一个相关问题,即在重力作用下,确定轴对称液滴在锥形基底上的平衡和稳定性。使用变分原理来表征在体积约束下使表面能和引力势能最小化的平衡形状,并使用角度/弧长公式对所得的欧拉方程进行数值求解。所得的平衡满足拉普拉斯 - 杨边界条件,该条件指定了三相交界处的接触角。发现平衡液滴在圆锥上的垂直位置随代表重力和毛细力之比的无量纲邦德数有显著变化;使用全局力平衡来研究影响液滴位置的条件。特别地,根据接触角和圆锥半角,我们发现由于重力名义上的增加,液滴的垂直位置可能会增加(“液滴爬上圆锥”)或减少。大多数平衡对应于向上的圆锥,类似于静置在平面上的液滴;然而我们也发现了对应于向下圆锥的平衡,这类似于从平面垂直悬挂的悬垂液滴。通过求解与能量泛函的二阶变分相关的特征值问题来确定液滴的线性稳定性。通常发现具有正邦德数的液滴对于促进液滴倾斜的非轴对称扰动是不稳定的。还发现了对应于轴对称基态极限点的额外的边际稳定性点。远离尖端的液滴会受到具有较高模式数的方位不稳定性影响,这类似于圆柱界面的瑞利不稳定性。我们还发现了一系列对应于小接触角和圆锥半角的完全稳定解。

相似文献

2
On the Stability of Rotating Drops.
J Res Natl Inst Stand Technol. 2015 Apr 20;120:74-101. doi: 10.6028/jres.120.007. eCollection 2015.
3
Stability of a compound sessile drop at the axisymmetric configuration.
J Colloid Interface Sci. 2016 Jan 15;462:88-99. doi: 10.1016/j.jcis.2015.09.043. Epub 2015 Sep 21.
4
The possible equilibrium shapes of static pendant drops.
J Chem Phys. 2010 Oct 14;133(14):144707. doi: 10.1063/1.3494041.
5
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
7
Bond Number Revisited: Axisymmetric Macroscopic Pendant Drop.
Langmuir. 2020 Jun 16;36(23):6512-6520. doi: 10.1021/acs.langmuir.0c00878. Epub 2020 Jun 1.
8
Bubbles and drops on curved surfaces.
Langmuir. 2013 Nov 19;29(46):14168-77. doi: 10.1021/la403088r. Epub 2013 Nov 4.
9
Spreading of liquid drops over porous substrates.
Adv Colloid Interface Sci. 2003 Jul 1;104:123-58. doi: 10.1016/s0001-8686(03)00039-3.
10
Drops on hydrophilic conical fibers: gravity effect and coexistent states.
Langmuir. 2015 Feb 10;31(5):1704-10. doi: 10.1021/la504552d. Epub 2015 Jan 28.

本文引用的文献

1
Understanding (sessile/constrained) bubble and drop oscillations.
Adv Colloid Interface Sci. 2014 Jan;203:22-36. doi: 10.1016/j.cis.2013.11.006. Epub 2013 Nov 18.
2
Instability of a rotating liquid ring.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):033016. doi: 10.1103/PhysRevE.88.033016. Epub 2013 Sep 23.
4
Quantification of the forces driving self-assembly of three-dimensional microtissues.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6993-8. doi: 10.1073/pnas.1102559108. Epub 2011 Apr 11.
5
The shrinking instability of toroidal liquid droplets in the Stokes flow regime.
Eur Phys J E Soft Matter. 2011 Mar;34(3):32. doi: 10.1140/epje/i2011-11032-9. Epub 2011 Mar 24.
7
Generation and stability of toroidal droplets in a viscous liquid.
Phys Rev Lett. 2009 Jun 12;102(23):234501. doi: 10.1103/PhysRevLett.102.234501. Epub 2009 Jun 10.
8
Shape equations for axisymmetric vesicles: A clarification.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 May;49(5):4728-4731. doi: 10.1103/physreve.49.4728.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验