Suppr超能文献

用于准确预测抑制剂对 CYP3A4 抑制活性的计算模型。

The computational model to predict accurately inhibitory activity for inhibitors towards CYP3A4.

机构信息

College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China.

出版信息

Comput Biol Med. 2010 Nov-Dec;40(11-12):845-52. doi: 10.1016/j.compbiomed.2010.09.004. Epub 2010 Oct 16.

Abstract

The cytochrome P450 (CYP) is a superfamily of enzymes with oxidative function responsible for the metabolism of xenobiotics especially drug metabolism. CYP3A4, an extensive studied CYP isoform, plays crucial role in the metabolism of structurally diverse drugs. Furthermore, the drug-drug interaction resulted from the inhibition of CYP3A4 activity is of extreme importance for the treatment of disease and the development of new drug. In this study, using the method of the support vector machine (SVM) and three descriptors selected from the 153 descriptors we construct the models that can predict accurately the inhibitory effect of a compound on the activity of CYP3A4. By optimizing the parameters related to SVM, the cross validation correlation efficient of the model can achieve 0.71, which is higher than those of other models obtained using Artifical Neutral Network (ANN) and Partial least square (PLS) methods to our knowledge, and thus our model can present the important application in assessment of the potential toxicity of a drug as well as prediction of drug-drug interactions.

摘要

细胞色素 P450(CYP)是一个具有氧化功能的酶超家族,负责代谢外来物质,特别是药物代谢。CYP3A4 是一种广泛研究的 CYP 同工酶,在结构多样的药物代谢中起着至关重要的作用。此外,由于 CYP3A4 活性的抑制而导致的药物-药物相互作用对于疾病的治疗和新药的开发极为重要。在这项研究中,我们使用支持向量机(SVM)的方法和从 153 个描述符中选择的三个描述符构建了可以准确预测化合物对 CYP3A4 活性抑制作用的模型。通过优化与 SVM 相关的参数,模型的交叉验证相关系数可以达到 0.71,这高于我们所知的使用人工神经网络(ANN)和偏最小二乘(PLS)方法获得的其他模型的相关系数,因此我们的模型可以在评估药物的潜在毒性和预测药物-药物相互作用方面具有重要的应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验