Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, Piscataway, NJ 08854, USA.
Anal Bioanal Chem. 2011 Jan;399(2):635-49. doi: 10.1007/s00216-010-4268-5. Epub 2010 Oct 16.
Heparin, a widely used anticoagulant primarily extracted from animal sources, contains varying amounts of galactosamine impurities. Currently, the United States Pharmacopeia (USP) monograph for heparin purity specifies that the weight percent of galactosamine (%Gal) may not exceed 1%. In the present study, multivariate regression (MVR) analysis of (1)H NMR spectral data obtained from heparin samples was employed to build quantitative models for the prediction of %Gal. MVR analysis was conducted using four separate methods: multiple linear regression, ridge regression, partial least squares regression, and support vector regression (SVR). Genetic algorithms and stepwise selection methods were applied for variable selection. In each case, two separate prediction models were constructed: a global model based on dataset A which contained the full range (0-10%) of galactosamine in the samples and a local model based on the subset dataset B for which the galactosamine level (0-2%) spanned the 1% USP limit. All four regression methods performed equally well for dataset A with low prediction errors under optimal conditions, whereas SVR was clearly superior among the four methods for dataset B. The results from this study show that (1)H NMR spectroscopy, already a USP requirement for the screening of contaminants in heparin, may offer utility as a rapid method for quantitative determination of %Gal in heparin samples when used in conjunction with MVR approaches.
肝素是一种广泛应用的抗凝剂,主要从动物源中提取,其中含有不同量的半乳糖胺杂质。目前,美国药典(USP)肝素纯度专论规定,半乳糖胺(%Gal)的重量百分比不得超过 1%。在本研究中,采用多变量回归(MVR)分析从肝素样品中获得的(1)H NMR 光谱数据,建立用于预测%Gal 的定量模型。MVR 分析采用了四种不同的方法:多元线性回归、岭回归、偏最小二乘回归和支持向量回归(SVR)。遗传算法和逐步选择方法用于变量选择。在每种情况下,构建了两个单独的预测模型:一个基于数据集 A 的全局模型,其中包含样本中半乳糖胺的全范围(0-10%),另一个基于数据集 B 的局部模型,其中半乳糖胺水平(0-2%)跨越 1%USP 限制。在最佳条件下,所有四种回归方法在数据集 A 上的表现都同样出色,预测误差较低,而 SVR 在数据集 B 上明显优于其他四种方法。本研究结果表明,(1)H NMR 光谱法已经是 USP 用于筛选肝素中污染物的要求,当与 MVR 方法结合使用时,可能成为快速定量测定肝素样品中%Gal 的方法。