State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
Langmuir. 2010 Nov 16;26(22):17037-47. doi: 10.1021/la102341a. Epub 2010 Oct 18.
A classical free energy density functional, which is isomorphic to a usual effective hard sphere model + mean field approximation for tail contribution, is proposed for treatment of real fluids in inhomogeneous states. In the framework of the classical density functional theory (DFT), the present functional is applied to two representative model fluids, namely, a Lennard-Jones fluid and a hard core attractive Yukawa fluid, subject to influence of various external fields. A comprehensive comparison with simulation results and a detailed analysis show that the present functional holds simultaneously all of the desirable properties inherent in an excellent functional, such as high accuracy, computational simplicity, consistency with a hard wall sum rule, nonrecourse to use of adjustable parameter(s) and weighted densities, reproduction of bulk second-order direct correlation function (DCF) in bulk limit, and applicability to subcritical fluid phenomena.
提出了一种经典的自由能密度泛函,它与通常的有效硬球模型+尾部贡献的平均场近似同构,用于处理不均匀状态下的真实流体。在经典密度泛函理论(DFT)的框架内,本泛函应用于两种代表性的模型流体,即 Lennard-Jones 流体和硬心吸引 Yukawa 流体,受到各种外部场的影响。与模拟结果的全面比较和详细分析表明,本泛函同时具有优秀泛函固有的所有理想特性,例如高精度、计算简单、与硬壁求和规则一致、不使用可调参数和加权密度、在本体极限中再现本体二阶直接相关函数 (DCF),以及适用于亚临界流体现象。