Suppr超能文献

如何将硬球密度泛函近似扩展到非均匀非硬球流体:适用于亚临界和超临界温度区域。

How to extend hard sphere density functional approximation to nonuniform nonhard sphere fluids: applicable to both subcritical and supercritical temperature regions.

作者信息

Zhou Shiqi

机构信息

Institute of Modern Statistical Mechanics, Zhuzhou Institute of Technology, Wenhua Road, Zhuzhou City 412008, People's Republic of China.

出版信息

J Chem Phys. 2006 Apr 14;124(14):144501. doi: 10.1063/1.2181137.

Abstract

A methodology for the formulation of density functional approximation (DFA) for nonuniform nonhard sphere fluids is proposed by following the spirit of a partitioned density functional approximation [Zhou, Phys. Rev. E 68, 061201 (2003)] and mapping the hard core part onto an effective hard sphere whose high order part of the functional perturbation expansion is treated by existing hard sphere DFAs. The resultant density functional theory (DFT) formalism only needs a second order direct correlation function and pressure of the corresponding coexistence bulk fluid as inputs and therefore can be applicable to both supercritical and subcritical temperature cases. As an example, an adjustable parameter-free version of a recently proposed Lagrangian theorem-based DFA is imported into the present methodology; the resultant DFA is applied to Lennard-Jones fluid under the influence of external fields due to a single hard wall, two hard walls separated by a small distance, a large hard sphere, and a spherical cavity with a hard wall. By comparing theoretical predictions with previous simulation data and those recently supplied for coexistence bulk fluid situated at "dangerous" regions, it was found that the present DFA can predict subtle structure change of the density profile and therefore is the most accurate among all existing DFT approaches. A detailed discussion is given as to why so excellent DFA for nonhard sphere fluids can be drawn forth from the present methodology and how the present methodology differs from previous ones. The methodology can be universal, i.e., it can be combined with any other hard sphere DFAs to construct DFA for other nonhard sphere fluids with a repulsive core.

摘要

遵循分区密度泛函近似的精神[周,《物理评论E》68,061201(2003)],提出了一种用于非均匀非硬球流体的密度泛函近似(DFA)的公式化方法,即将硬核部分映射到一个有效硬球上,其泛函微扰展开的高阶部分由现有的硬球DFA处理。由此产生的密度泛函理论(DFT)形式主义只需要相应共存体相流体的二阶直接相关函数和压力作为输入,因此可以适用于超临界和亚临界温度情况。作为一个例子,将最近提出的基于拉格朗日定理的DFA的一个无可调参数版本引入到本方法中;所得的DFA应用于在单个硬壁、由小距离隔开的两个硬壁、一个大硬球和一个有硬壁的球形腔引起的外场影响下的 Lennard-Jones 流体。通过将理论预测与先前的模拟数据以及最近为位于“危险”区域的共存体相流体提供的数据进行比较,发现本DFA可以预测密度分布的细微结构变化,因此在所有现有的DFT方法中是最准确的。详细讨论了为什么可以从本方法中得出如此出色的非硬球流体DFA,以及本方法与先前方法的不同之处。该方法可以是通用的,即它可以与任何其他硬球DFA相结合,以构建用于其他具有排斥核的非硬球流体的DFA。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验