Laboratory of Regulation of Biological Reactions, Institute for Protein Research,Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
Biochemistry. 2010 Nov 23;49(46):10013-23. doi: 10.1021/bi100855a. Epub 2010 Oct 27.
Ferredoxin (Fd) and Fd-NADP(+) reductase (FNR) are redox partners responsible for the conversion between NADP(+) and NADPH in the plastids of photosynthetic organisms. Introduction of specific disulfide bonds between Fd and FNR by engineering cysteines into the two proteins resulted in 13 different Fd-FNR cross-linked complexes displaying a broad range of activity to catalyze the NADPH-dependent cytochrome c reduction. This variability in activity was thought to be mainly due to different levels of intramolecular electron transfer activity between the FNR and Fd domains. Stopped-flow analysis revealed such differences in the rate of electron transfer from the FNR to Fd domains in some of the cross-linked complexes. A group of the cross-linked complexes with high cytochrome c reduction activity comparable to dissociable wild-type Fd/FNR was shown to assume a similar Fd-FNR interaction mode as in the native Fd:FNR complex by analyses of NMR chemical shift perturbation and absorption spectroscopy. However, the intermolecular electron transfer of these cross-linked complexes with two Fd-binding proteins, nitrite reductase and photosystem I, was largely inhibited, most probably due to steric hindrance by the FNR moiety linked near the redox center of the Fd domain. In contrast, another group of the cross-linked complexes with low cytochrome c reduction activity tends to mediate higher intermolecular electron transfer activity. Therefore, reciprocal relationship of intramolecular and intermolecular electron transfer abilities was conferred by the linkage of Fd and FNR, which may explain the physiological significance of the separate forms of Fd and FNR in chloroplasts.
铁氧还蛋白(Fd)和 Fd-NADP(+)还原酶(FNR)是负责光合生物质体中 NADP(+)和 NADPH 之间转化的氧化还原伴侣。通过在这两种蛋白质中引入特定的二硫键,将 Fd 和 FNR 工程化连接起来,产生了 13 种不同的 Fd-FNR 交联复合物,具有广泛的活性,可催化 NADPH 依赖的细胞色素 c 还原。这种活性的可变性被认为主要是由于 FNR 和 Fd 结构域之间的分子内电子转移活性的不同水平。停流分析揭示了一些交联复合物中 FNR 到 Fd 结构域的电子转移速率存在差异。一组具有与可分离的野生型 Fd/FNR 相当的高细胞色素 c 还原活性的交联复合物,通过 NMR 化学位移扰动和吸收光谱分析,被证明采用了与天然 Fd:FNR 复合物相似的 Fd-FNR 相互作用模式。然而,这些具有两个 Fd 结合蛋白(亚硝酸盐还原酶和光系统 I)的交联复合物的分子间电子转移被极大地抑制,很可能是由于 FNR 部分靠近 Fd 结构域的氧化还原中心连接而产生的空间位阻。相比之下,另一组具有低细胞色素 c 还原活性的交联复合物往往具有更高的分子间电子转移活性。因此,Fd 和 FNR 的连接赋予了分子内和分子间电子转移能力的相互关系,这可能解释了叶绿体中 Fd 和 FNR 分离形式的生理意义。