Suppr超能文献

双侧大脑胼胝体对年轻人和老年人双手控制的差异贡献。

Differential callosal contributions to bimanual control in young and older adults.

机构信息

University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109-2214, USA.

出版信息

J Cogn Neurosci. 2011 Sep;23(9):2171-85. doi: 10.1162/jocn.2010.21600. Epub 2010 Oct 18.

Abstract

Our recent work has shown that older adults are disproportionately impaired at bimanual tasks when the two hands are moving out of phase with each other [Bangert, A. S., Reuter-Lorenz, P. A., Walsh, C. M., Schachter, A. B., & Seidler, R. D. Bimanual coordination and aging: Neurobehavioral implications. Neuropsychologia, 48, 1165-1170, 2010]. Interhemispheric interactions play a key role during such bimanual movements to prevent interference from the opposite hemisphere. Declines in corpus callosum (CC) size and microstructure with advancing age have been well documented, but their contributions to age deficits in bimanual function have not been identified. In the current study, we used structural magnetic resonance and diffusion tensor imaging to investigate age-related changes in the relationships between callosal macrostructure, microstructure, and motor performance on tapping tasks requiring differing degrees of interhemispheric interaction. We found that older adults demonstrated disproportionately poorer performance on out-of-phase bimanual control, replicating our previous results. In addition, older adults had smaller anterior CC size and poorer white matter integrity in the callosal midbody than their younger counterparts. Surprisingly, larger CC size and better integrity of callosal microstructure in regions connecting sensorimotor cortices were associated with poorer motor performance on tasks requiring high levels of interhemispheric interaction in young adults. Conversely, in older adults, better performance on these tasks was associated with larger size and better CC microstructure integrity within the same callosal regions. These findings implicate age-related declines in callosal size and integrity as a key contributor to bimanual control deficits. Further, the differential age-related involvement of transcallosal pathways reported here raises new questions about the role of the CC in bimanual control.

摘要

我们最近的工作表明,当双手彼此之间不同步移动时,老年人在双手任务中受到的影响不成比例[Bangert, A. S., Reuter-Lorenz, P. A., Walsh, C. M., Schachter, A. B., & Seidler, R. D. 双手协调与衰老:神经行为学意义。神经心理学,48,1165-1170,2010]。在这种双手运动中,大脑两半球间的相互作用起着关键作用,以防止来自对侧半球的干扰。随着年龄的增长,胼胝体(CC)的大小和微观结构的下降已经得到了很好的记录,但它们对双手功能的年龄缺陷的贡献尚未确定。在当前的研究中,我们使用结构磁共振和弥散张量成像来研究与年龄相关的变化,这些变化与胼胝体宏观结构、微观结构以及需要不同程度大脑两半球间相互作用的敲击任务的运动表现之间的关系。我们发现,老年人在不同步的双手控制任务中的表现明显较差,这复制了我们之前的结果。此外,老年人的前胼胝体大小较小,胼胝体中部的白质完整性较差,与他们的年轻对照组相比。令人惊讶的是,在需要大脑两半球间高度相互作用的年轻成年人中,与传感器运动皮层相连的胼胝体区域的胼胝体大小和微观结构的完整性较好,与需要高度大脑两半球间相互作用的任务的运动表现较差相关。相反,在老年人中,这些任务的表现较好与同一胼胝体区域内的胼胝体大小和微观结构的完整性较好相关。这些发现表明,与年龄相关的胼胝体大小和完整性的下降是双手控制缺陷的关键因素。此外,这里报告的与年龄相关的胼胝体通路的差异参与提出了关于胼胝体在双手控制中的作用的新问题。

相似文献

1
Differential callosal contributions to bimanual control in young and older adults.
J Cogn Neurosci. 2011 Sep;23(9):2171-85. doi: 10.1162/jocn.2010.21600. Epub 2010 Oct 18.
2
Fundamental differences in callosal structure, neurophysiologic function, and bimanual control in young and older adults.
Cereb Cortex. 2012 Nov;22(11):2643-52. doi: 10.1093/cercor/bhr349. Epub 2011 Dec 12.
3
Bimanual motor deficits in older adults predicted by diffusion tensor imaging metrics of corpus callosum subregions.
Brain Struct Funct. 2015 Jan;220(1):273-90. doi: 10.1007/s00429-013-0654-z. Epub 2013 Oct 26.
6
Transcallosal sensorimotor fiber tract structure-function relationships.
Hum Brain Mapp. 2013 Feb;34(2):384-95. doi: 10.1002/hbm.21437. Epub 2011 Oct 31.
9
Age differences in callosal contributions to cognitive processes.
Neuropsychologia. 2011 Jul;49(9):2564-9. doi: 10.1016/j.neuropsychologia.2011.05.004. Epub 2011 May 12.
10
The development of corpus callosum microstructure and associations with bimanual task performance in healthy adolescents.
Neuroimage. 2008 Feb 15;39(4):1918-25. doi: 10.1016/j.neuroimage.2007.10.018. Epub 2007 Oct 25.

引用本文的文献

1
Effect of aging on the visuomotor control during continuous bimanual movement.
Front Aging Neurosci. 2025 Aug 6;17:1525535. doi: 10.3389/fnagi.2025.1525535. eCollection 2025.
2
Aging-Related Changes in Bimanual Coordination as a Screening Tool for Healthy Aging.
Geriatrics (Basel). 2025 Mar 17;10(2):45. doi: 10.3390/geriatrics10020045.
3
Size and site matter: the influence of corpus callosum subregional lesions on the magnitude of cross-education of strength.
Front Physiol. 2025 Feb 24;16:1554742. doi: 10.3389/fphys.2025.1554742. eCollection 2025.
4
Distinctive features of bimanual coordination in idiopathic normal pressure hydrocephalus.
Acta Neurochir (Wien). 2024 Nov 28;166(1):485. doi: 10.1007/s00701-024-06363-w.
5
Interhemispheric inhibition and gait adaptation associations in people with multiple sclerosis.
Exp Brain Res. 2024 Jul;242(7):1761-1772. doi: 10.1007/s00221-024-06860-5. Epub 2024 Jun 1.
6
A table tennis serve versus rally hit elicits differential hemispheric electrocortical power fluctuations.
J Neurophysiol. 2023 Dec 1;130(6):1444-1456. doi: 10.1152/jn.00091.2023. Epub 2023 Nov 15.
7
Altered corpus callosum structure in adolescents with cerebral palsy: connection to gait and balance.
Brain Struct Funct. 2023 Nov;228(8):1901-1915. doi: 10.1007/s00429-023-02692-1. Epub 2023 Aug 24.
8
Bimanual motor impairments in older adults: an updated systematic review and meta-analysis.
EXCLI J. 2022 Aug 16;21:1068-1083. doi: 10.17179/excli2022-5236. eCollection 2022.
10
Correlations between Hand Dexterity and Bimanual Coordination on the Activities of Daily Living in Older Adults with Mild Cognitive Impairment.
Dement Geriatr Cogn Dis Extra. 2022 Feb 18;12(1):24-32. doi: 10.1159/000521644. eCollection 2022 Jan-Apr.

本文引用的文献

1
Functional implications of age differences in motor system connectivity.
Front Syst Neurosci. 2010 Jun 7;4:17. doi: 10.3389/fnsys.2010.00017. eCollection 2010.
3
Bimanual coordination and aging: neurobehavioral implications.
Neuropsychologia. 2010 Mar;48(4):1165-70. doi: 10.1016/j.neuropsychologia.2009.11.013. Epub 2009 Nov 24.
4
Motor control and aging: links to age-related brain structural, functional, and biochemical effects.
Neurosci Biobehav Rev. 2010 Apr;34(5):721-33. doi: 10.1016/j.neubiorev.2009.10.005. Epub 2009 Oct 20.
5
Assessing the effects of age on long white matter tracts using diffusion tensor tractography.
Neuroimage. 2009 Jun;46(2):530-41. doi: 10.1016/j.neuroimage.2009.01.068.
6
Age-related differences in inhibitory processes during interlimb coordination.
Brain Res. 2009 Mar 25;1262:38-47. doi: 10.1016/j.brainres.2009.01.023. Epub 2009 Feb 7.
7
Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human.
Cereb Cortex. 2009 Jul;19(7):1654-65. doi: 10.1093/cercor/bhn201. Epub 2008 Nov 17.
9
Unimanual muscle activation increases interhemispheric inhibition from the active to the resting hemisphere.
Neurosci Lett. 2008 Nov 21;445(3):209-13. doi: 10.1016/j.neulet.2008.09.013. Epub 2008 Sep 11.
10
Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance.
Neurobiol Aging. 2010 Mar;31(3):464-81. doi: 10.1016/j.neurobiolaging.2008.04.007. Epub 2008 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验