Suppr超能文献

线粒体与神经可塑性。

Mitochondria and neuroplasticity.

机构信息

Laboratory of Neurosciences, National Institute of Aging Intramural Research Program, Baltimore, MD 21224, U.S.A.

出版信息

ASN Neuro. 2010 Oct 4;2(5):e00045. doi: 10.1042/AN20100019.

Abstract

The production of neurons from neural progenitor cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. These processes are regulated by cell-autonomous and intercellular (paracrine and endocrine) programs that mediate responses of neural cells to environmental input. Mitochondria are highly mobile and move within and between subcellular compartments involved in neuroplasticity (synaptic terminals, dendrites, cell body and the axon). By generating energy (ATP and NAD(+)), and regulating subcellular Ca(2+) and redox homoeostasis, mitochondria may play important roles in controlling fundamental processes in neuroplasticity, including neural differentiation, neurite outgrowth, neurotransmitter release and dendritic remodelling. Particularly intriguing is emerging data suggesting that mitochondria emit molecular signals (e.g. reactive oxygen species, proteins and lipid mediators) that can act locally or travel to distant targets including the nucleus. Disturbances in mitochondrial functions and signalling may play roles in impaired neuroplasticity and neuronal degeneration in Alzheimer's disease, Parkinson's disease, psychiatric disorders and stroke.

摘要

神经元由神经祖细胞产生,轴突和树突的生长,以及突触的形成和重组都是神经可塑性的例子。这些过程受细胞自主和细胞间(旁分泌和内分泌)程序的调节,介导神经细胞对环境输入的反应。线粒体具有高度的流动性,在涉及神经可塑性的亚细胞隔室(突触末端、树突、细胞体和轴突)内和之间移动。通过产生能量(ATP 和 NAD(+)),以及调节亚细胞 Ca(2+)和氧化还原同型,线粒体可能在控制神经可塑性的基本过程中发挥重要作用,包括神经分化、突起生长、神经递质释放和树突重塑。特别有趣的是,新出现的数据表明,线粒体发出分子信号(例如活性氧物质、蛋白质和脂质介质),可以在局部发挥作用或传播到远处的靶标,包括细胞核。线粒体功能和信号转导的障碍可能在阿尔茨海默病、帕金森病、精神障碍和中风中导致神经可塑性受损和神经元变性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df31/2949087/00849bf0e886/an002e045f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验