UMR CNRS-UM2-IFREMER-IRD 5119 Écosystèmes Lagunaires, Université, , Montpellier 2 cc 093, 34 095 Montpellier Cedex 5, France.
Biol Lett. 2011 Apr 23;7(2):205-9. doi: 10.1098/rsbl.2010.0769. Epub 2010 Oct 20.
Measuring the phylogenetic diversity of communities has become a key issue for biogeography and conservation. However, most diversity indices that rely on interspecies phylogenetic distances may increase with species loss and thus violate the principle of weak monotonicity. Moreover, most published phylogenetic diversity indices ignore the abundance distribution along phylogenetic trees, even though lineage abundances are crucial components of biodiversity. The recently introduced concept of phylogenetic entropy overcomes these limitations, but has not been decomposed across scales, i.e. into α, β and γ components. A full understanding of mechanisms sustaining biological diversity within and between communities needs such decomposition. Here, we propose an additive decomposition framework for estimating α, β and γ components of phylogenetic entropy. Based on simulated trees, we demonstrate its robustness to phylogenetic tree shape and species richness. Our decomposition fulfils the requirements of both independence between components and weak monotonicity. Finally, our decomposition can also be adapted to the partitioning of functional diversity across different scales with the same desirable properties.
衡量群落的系统发育多样性已成为生物地理学和保护生物学的一个关键问题。然而,大多数依赖种间系统发育距离的多样性指数可能会随着物种的丧失而增加,从而违反了弱单调性原则。此外,大多数已发表的系统发育多样性指数忽略了系统发育树上的丰度分布,尽管谱系丰度是生物多样性的关键组成部分。最近引入的系统发育熵的概念克服了这些限制,但没有跨尺度进行分解,即分解为α、β和γ分量。要全面了解维持群落内和群落间生物多样性的机制,就需要这种分解。在这里,我们提出了一种用于估计系统发育熵的α、β和γ分量的可加分解框架。基于模拟树,我们证明了它对系统发育树形状和物种丰富度的稳健性。我们的分解满足了组分之间独立性和弱单调性的要求。最后,我们的分解也可以适应不同尺度上功能多样性的划分,具有相同的理想特性。