Suppr超能文献

RNA 发夹折叠和展开过程中的环和茎动力学。

Loop and stem dynamics during RNA hairpin folding and unfolding.

机构信息

Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA.

出版信息

RNA. 2010 Dec;16(12):2427-34. doi: 10.1261/rna.2253310. Epub 2010 Oct 20.

Abstract

2-Aminopurine (2AP) is a fluorescent adenine analog that probes mainly base stacking in nucleic acids. We labeled the loop or the stem of the RNA hairpin gacUACGguc with 2AP to study folding thermodynamics and kinetics at both loci. Thermal melts and fast laser temperature jumps detected by 2AP fluorescence monitored the stability and folding/unfolding kinetics. The observed thermodynamic and kinetic traces of the stem and loop mutants, though strikingly different at a first glance, can be fitted to the same free-energy landscape. The differences between the two probe locations arise because base stacking decreases upon unfolding in the stem, whereas it increases in the loop. We conclude that 2AP is a conservative adenine substitution for mapping out the contributions of different RNA structural elements to the overall folding process. Molecular dynamics (MD) totaling 0.6 μsec were performed to look at the conformations populated by the RNA at different temperatures. The combined experimental data, and MD simulations lead us to propose a minimal four-state free-energy landscape for the RNA hairpin. Analysis of this landscape shows that a sequential folding model is a good approximation for the full folding dynamics. The frayed state formed initially from the native state is a heterogeneous ensemble of structures whose stem is frayed either from the end or from the loop.

摘要

2-氨基嘌呤(2AP)是一种荧光腺嘌呤类似物,主要探测核酸中的碱基堆积。我们用 2AP 标记 RNA 发夹的环或茎,以研究两个位置的折叠热力学和动力学。通过 2AP 荧光检测的热融解和快速激光温度跃变监测稳定性和折叠/去折叠动力学。尽管乍一看,茎和环突变体的观察到的热力学和动力学轨迹明显不同,但它们可以拟合到相同的自由能景观中。两个探针位置之间的差异是因为在茎中展开时碱基堆积减少,而在环中增加。我们得出结论,2AP 是一种保守的腺嘌呤取代物,用于绘制不同 RNA 结构元件对整体折叠过程的贡献。进行了总计 0.6 μsec 的分子动力学(MD)模拟,以观察 RNA 在不同温度下的构象。结合实验数据和 MD 模拟,我们提出了 RNA 发夹的最小四态自由能景观。对该景观的分析表明,顺序折叠模型是完整折叠动力学的良好近似。最初从天然状态形成的磨损状态是结构的不均匀集合,其茎从末端或从环磨损。

相似文献

1
Loop and stem dynamics during RNA hairpin folding and unfolding.
RNA. 2010 Dec;16(12):2427-34. doi: 10.1261/rna.2253310. Epub 2010 Oct 20.
2
Fast folding of an RNA tetraloop on a rugged energy landscape detected by a stacking-sensitive probe.
Biophys J. 2009 Sep 2;97(5):1418-27. doi: 10.1016/j.bpj.2009.06.035.
3
Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
Biochemistry. 2007 Sep 25;46(38):10756-66. doi: 10.1021/bi7005674. Epub 2007 Aug 25.
4
Site-specific variations in RNA folding thermodynamics visualized by 2-aminopurine fluorescence.
Biochemistry. 2007 Dec 11;46(49):13948-60. doi: 10.1021/bi7011977. Epub 2007 Nov 13.
5
2-aminopurine as a probe of RNA conformational transitions.
Methods Enzymol. 2009;469:269-85. doi: 10.1016/S0076-6879(09)69013-3.
6
Exploring the energy landscape of a small RNA hairpin.
J Am Chem Soc. 2006 Feb 8;128(5):1523-30. doi: 10.1021/ja0553856.
7
Unfolding and melting of DNA (RNA) hairpins: the concept of structure-specific 2D dynamic landscapes.
Phys Chem Chem Phys. 2008 Aug 7;10(29):4227-39. doi: 10.1039/b804675c. Epub 2008 Jun 3.
8
Dynamics of the RNA hairpin GNRA tetraloop.
Biochemistry. 2000 Apr 18;39(15):4500-7. doi: 10.1021/bi992297n.
10
RNA simulations: probing hairpin unfolding and the dynamics of a GNRA tetraloop.
J Mol Biol. 2002 Apr 5;317(4):493-506. doi: 10.1006/jmbi.2002.5447.

引用本文的文献

1
RNA adapts its flexibility to efficiently fold and resist unfolding.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf681.
2
RNA adapts its flexibility to efficiently fold and resist unfolding.
bioRxiv. 2024 Nov 5:2024.05.27.595525. doi: 10.1101/2024.05.27.595525.
3
Sequence-Dependent Melting and Refolding Dynamics of RNA UNCG Tetraloops Using Temperature-Jump/Drop Infrared Spectroscopy.
J Phys Chem B. 2023 Feb 23;127(7):1586-1597. doi: 10.1021/acs.jpcb.2c08709. Epub 2023 Feb 14.
4
Characterizing the Conformational Free-Energy Landscape of RNA Stem-Loops Using Single-Molecule Field-Effect Transistors.
J Am Chem Soc. 2023 Jan 11;145(1):402-412. doi: 10.1021/jacs.2c10218. Epub 2022 Dec 22.
5
Measuring RNA UNCG Tetraloop Refolding Dynamics Using Temperature-Jump/Drop Infrared Spectroscopy.
J Phys Chem Lett. 2022 Oct 6;13(39):9171-9176. doi: 10.1021/acs.jpclett.2c02338. Epub 2022 Sep 27.
6
Accelerating the Ensemble Convergence of RNA Hairpin Simulations with a Replica Exchange Structure Reservoir.
J Chem Theory Comput. 2022 Jun 14;18(6):3930-3947. doi: 10.1021/acs.jctc.2c00065. Epub 2022 May 3.
8
Salt effect on thermodynamics and kinetics of a single RNA base pair.
RNA. 2020 Apr;26(4):470-480. doi: 10.1261/rna.073882.119. Epub 2020 Jan 27.
9
Monovalent ions modulate the flux through multiple folding pathways of an RNA pseudoknot.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7313-E7322. doi: 10.1073/pnas.1717582115. Epub 2018 Jul 16.
10
Understanding the kinetic mechanism of RNA single base pair formation.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):116-21. doi: 10.1073/pnas.1517511113. Epub 2015 Dec 22.

本文引用的文献

1
Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17349-54. doi: 10.1073/pnas.0906625106. Epub 2009 Oct 5.
2
Fast folding of an RNA tetraloop on a rugged energy landscape detected by a stacking-sensitive probe.
Biophys J. 2009 Sep 2;97(5):1418-27. doi: 10.1016/j.bpj.2009.06.035.
3
Rearrangement of partially ordered stacked conformations contributes to the rugged energy landscape of a small RNA hairpin.
Biochemistry. 2008 Oct 14;47(41):10834-40. doi: 10.1021/bi801170c. Epub 2008 Sep 23.
4
Multiple probes are required to explore and control the rugged energy landscape of RNA hairpins.
J Am Chem Soc. 2008 Feb 6;130(5):1538-9. doi: 10.1021/ja0771641. Epub 2008 Jan 11.
5
Simulation of the pressure and temperature folding/unfolding equilibrium of a small RNA hairpin.
J Am Chem Soc. 2008 Jan 23;130(3):815-7. doi: 10.1021/ja074191i. Epub 2007 Dec 23.
6
Loop dependence of the stability and dynamics of nucleic acid hairpins.
Nucleic Acids Res. 2008 Mar;36(4):1098-112. doi: 10.1093/nar/gkm1083. Epub 2007 Dec 20.
7
Molecular dynamics simulation of the structure, dynamics, and thermostability of the RNA hairpins uCACGg and cUUCGg.
J Phys Chem B. 2008 Jan 10;112(1):134-42. doi: 10.1021/jp0764337. Epub 2007 Dec 11.
8
Site-specific variations in RNA folding thermodynamics visualized by 2-aminopurine fluorescence.
Biochemistry. 2007 Dec 11;46(49):13948-60. doi: 10.1021/bi7011977. Epub 2007 Nov 13.
9
Structures, kinetics, thermodynamics, and biological functions of RNA hairpins.
Annu Rev Phys Chem. 2008;59:79-103. doi: 10.1146/annurev.physchem.59.032607.093743.
10
DNA folding and melting observed in real time redefine the energy landscape.
Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):712-6. doi: 10.1073/pnas.0610028104. Epub 2007 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验