Suppr超能文献

使用复制交换结构储库加速 RNA 发夹模拟的集合收敛。

Accelerating the Ensemble Convergence of RNA Hairpin Simulations with a Replica Exchange Structure Reservoir.

机构信息

Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794, United States.

Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States.

出版信息

J Chem Theory Comput. 2022 Jun 14;18(6):3930-3947. doi: 10.1021/acs.jctc.2c00065. Epub 2022 May 3.

Abstract

RNA is a key participant in many biological processes, but studies of RNA using computer simulations lag behind those of proteins, largely due to less-developed force fields and the slow dynamics of RNA. Generating converged RNA ensembles for force field development and other studies remains a challenge. In this study, we explore the ability of replica exchange molecular dynamics to obtain well-converged conformational ensembles for two RNA hairpin systems in an implicit solvent. Even for these small model systems, standard REMD remains computationally costly, but coupling to a pre-generated structure library using the reservoir REMD approach provides a dramatic acceleration of ensemble convergence for both model systems. Such precise ensembles could facilitate RNA force field development and validation and applications of simulation to more complex RNA systems. The advantages and remaining challenges of applying R-REMD to RNA are investigated in detail.

摘要

RNA 是许多生物过程的关键参与者,但使用计算机模拟研究 RNA 的进展落后于蛋白质,主要原因是力场的发展不够完善以及 RNA 的动态较慢。为了进行力场开发和其他研究,生成收敛的 RNA 集合仍然是一个挑战。在这项研究中,我们探索了 replica exchange 分子动力学在隐溶剂中获得两个 RNA 发夹系统良好收敛构象集合的能力。即使对于这些小型模型系统,标准 REMD 仍然计算成本高昂,但使用储库 REMD 方法与预先生成的结构库耦合,可以显著加速两个模型系统的集合收敛。这样精确的集合可以促进 RNA 力场的开发和验证,并将模拟应用于更复杂的 RNA 系统。详细研究了将 R-REMD 应用于 RNA 的优点和剩余挑战。

相似文献

引用本文的文献

1
Recent Developments in Amber Biomolecular Simulations.琥珀色生物分子模拟的最新进展。
J Chem Inf Model. 2025 Aug 11;65(15):7835-7843. doi: 10.1021/acs.jcim.5c01063. Epub 2025 Jul 29.
3
Accurately Modeling RNA Stem-Loops in an Implicit Solvent Environment.在隐式溶剂环境中精确模拟RNA茎环结构
J Chem Inf Model. 2024 Aug 12;64(15):6092-6104. doi: 10.1021/acs.jcim.4c00756. Epub 2024 Jul 13.

本文引用的文献

2
3
Protein storytelling through physics.通过物理进行蛋白质叙事。
Science. 2020 Nov 27;370(6520). doi: 10.1126/science.aaz3041.
5
RNA in cancer.癌症中的 RNA。
Nat Rev Cancer. 2021 Jan;21(1):22-36. doi: 10.1038/s41568-020-00306-0. Epub 2020 Oct 20.
6
Computing Ligands Bound to Proteins Using MELD-Accelerated MD.使用MELD加速分子动力学计算与蛋白质结合的配体
J Chem Theory Comput. 2020 Oct 13;16(10):6377-6382. doi: 10.1021/acs.jctc.0c00543. Epub 2020 Sep 23.
8
Molecular dynamics simulations of cognate and non-cognate AspRS-tRNA complexes.同源和非同源 AspRS-tRNA 复合物的分子动力学模拟。
J Biomol Struct Dyn. 2021 Feb;39(2):493-501. doi: 10.1080/07391102.2019.1711188. Epub 2020 Jan 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验