Theorie-2, Institut für Festkörperforschung, Forschungszentrum Jülich, 52425, Jülich, Germany.
Eur Biophys J. 2011 Jan;40(1):69-80. doi: 10.1007/s00249-010-0628-5. Epub 2010 Oct 21.
We analyze looping of thin charged elastic filaments under applied torques and end forces, using the solution of linear elasticity theory equations. In application to DNA, we account for its polyelectrolyte character and charge renormalization, calculating electrostatic energies stored in the loops. We argue that the standard theory of electrostatic persistence is only valid when the loop's radius of curvature and close-contact distance are much larger than the Debye screening length. We predict that larger twist rates are required to trigger looping of charged rods as compared with neutral ones. We then analyze loop shapes formed on charged filaments of finite length, mimicking DNA looping by proteins with two DNA-binding domains. We find optimal loop shapes at different salt amounts, minimizing the sum of DNA elastic, DNA electrostatic, and protein elastic energies. We implement a simple model where intercharge repulsions do not affect the loop shape directly but can choose the energy-optimized shape from the allowed loop types. At low salt concentrations more open loops are favored due to enhanced repulsion of DNA charges, consistent with the results of computer simulations on formation of DNA loops by lac repressor. Then, we model the precise geometry of DNA binding by the lac tetramer and explore loop shapes, varying the confined DNA length and protein opening angle. The characteristics of complexes obtained, such as the total loop energy, stretching forces required to maintain its shape, and the reduction of electrostatic energy with increment of salt, are in good agreement with the outcomes of more elaborate numerical calculations for lac-repressor-induced DNA looping.
我们分析了在施加扭矩和末端力的情况下,薄带电荷弹性丝的循环,使用线性弹性理论方程的解。在应用于 DNA 时,我们考虑了其聚电解质性质和电荷重整化,计算了存储在环中的静电能。我们认为,标准的静电持久理论只有在环的曲率半径和紧密接触距离远大于德拜屏蔽长度时才有效。我们预测,与中性棒相比,带电荷的棒需要更大的扭转率才能引发环化。然后,我们分析了具有两个 DNA 结合域的蛋白质模拟 DNA 环化的有限长度带电细丝上形成的环形状。我们在不同盐量下找到了最佳的环形状,使 DNA 弹性、DNA 静电和蛋白质弹性的总能量最小化。我们实现了一个简单的模型,其中电荷排斥不直接影响环的形状,但可以从允许的环类型中选择能量优化的形状。在低盐浓度下,由于 DNA 电荷的排斥增强,更多的开放环更受欢迎,这与 lac 阻遏物形成 DNA 环的计算机模拟结果一致。然后,我们通过 lac 四聚体模拟 DNA 结合的精确几何形状,并探索环形状,改变受限 DNA 长度和蛋白质开口角度。所获得的复合物的特征,例如总环能量、维持其形状所需的拉伸力以及随着盐的增加静电能的减少,与更精细的 lac 阻遏物诱导 DNA 环化的数值计算结果非常吻合。