Suppr超能文献

通过温度和化学结构修饰来控制分子线中的电荷转移。

Control over charge transfer through molecular wires by temperature and chemical structure modifications.

机构信息

Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

出版信息

ACS Nano. 2010 Nov 23;4(11):6449-62. doi: 10.1021/nn1013758. Epub 2010 Oct 21.

Abstract

A series of electron donor-acceptor arrays containing π-conjugated oligofluorenes (oFL) of variable length between a zinc porphyrin (ZnP) as electron donor and fullerene (C(60)) as electron acceptor have been prepared by following a convergent synthesis. The electronic interactions between the electroactive species were determined by cyclic voltammetry, UV-visible, fluorescence, and femto/nanosecond transient absorption spectroscopy. Our studies clearly confirm that, although the C(60) units are connected to the ZnP donor through π-conjugated oFL frameworks, no significant electronic interactions prevail in the ground state. Theoretical calculations predict that a long-range electron transfer occurs primarily due to a maximized π-conjugated pathway from the donor to the acceptor. Photoexcitation of ZnP-oFL(n)-C(60) results in transient absorption maxima at 715 and 1010 nm, which are unambiguously attributed to the photolytically generated radical ion pair state, [ZnP(•+)-oFL(n)-C(60)(•-)], with lifetimes in the microsecond time regime. Temperature-dependent photophysical experiments have shown that the charge-transfer mechanism is controllable by temperature. Both charge separation and charge recombination processes give rise to a molecular wire behavior of the oFL moiety with an attenuation factor (β) of 0.097 Å(-1). The correlation β to the connection pattern between the ZnP donor and the oFL linker revealed that even small alterations of the linker π-electron system break the homogeneous π-conjugation pattern, leading to higher values of β.

摘要

一系列包含不同长度的π-共轭寡聚芴(oFL)的电子给体-受体系列,寡聚芴连接在锌卟啉(ZnP)作为电子给体和富勒烯(C(60))作为电子受体之间,通过收敛合成制备。通过循环伏安法、紫外-可见光谱、荧光光谱和皮秒/纳秒瞬态吸收光谱确定了活性物质之间的电子相互作用。我们的研究清楚地证实,尽管 C(60)单元通过π-共轭 oFL 框架连接到 ZnP 供体,但在基态中不存在显著的电子相互作用。理论计算预测,长程电子转移主要是由于从供体到受体的最大π-共轭途径发生。ZnP-oFL(n)-C(60)的光激发导致在 715 和 1010nm 处出现瞬态吸收最大值,这明确归因于光解产生的自由基离子对态[ZnP(•+)-oFL(n)-C(60)(•-)],其寿命处于微秒时间范围内。温度依赖的光物理实验表明,电荷转移机制可通过温度控制。电荷分离和电荷复合过程都导致 oFL 部分具有分子导线行为,衰减因子(β)为 0.097Å(-1)。β与 ZnP 供体和 oFL 连接体之间的连接模式的相关性表明,即使连接体π-电子系统的微小改变也会破坏均匀的π-共轭模式,导致β值升高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验