Suppr超能文献

关于光合作用膜内主要植物光捕获复合物聚集的光物理后果的理论研究。

A theoretical investigation of the photophysical consequences of major plant light-harvesting complex aggregation within the photosynthetic membrane.

机构信息

School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.

出版信息

J Phys Chem B. 2010 Nov 25;114(46):15244-53. doi: 10.1021/jp106234e. Epub 2010 Oct 21.

Abstract

Spectroscopic measurements of Arabidopsis leaves have shown that the energy-dependent component of non-photochemical quenching (NPQ), known as qE, is associated with an absorption change at 535 nm (ΔA(535)). Identical measurements on the zeaxanthin-deficient mutant npq1 reveal a similar spectroscopic signature at 525 nm (ΔA(525)). We investigated whether these red-shifts may arise from excitonic interactions among homodimers of xanthophylls, zeaxanthin, and violaxanthin, bound at the peripheral V1 binding site on adjacent light-harvesting complex II (LHCII) trimers. Estimates of the relative geometries of these pigment pairs were obtained from the structure of LHCII. The excitonic couplings of zeaxanthin and violaxanthin dimers were probed using the time-dependent density functional theory method (TD-DFT). Calculations indicated that dimers formed between zeaxanthin or violaxanthin molecules using the published LHCII structure resulted in absorption blue shifts, typical of an H-type (parallel) geometry. In contrast, if the volume of the LHCII structure was modified to reflect the change in membrane thickness that occurs upon ΔpH formation, then both zeaxanthin and violaxanthin dimers adopted a J-type (collinear) geometry, and the resulting spectral shift was to the red region. The magnitudes of these predicted red-shifts are in good agreement with the experimental magnitudes. We therefore conclude that the observed xanthophyll red-shift results from the combination of both LHCII aggregation and changes in membrane thickness during qE. ΔA(535) may therefore be considered a "marker of aggregation" between LHCII trimers upon qE formation.

摘要

对拟南芥叶片的光谱测量表明,非光化学猝灭(NPQ)的能量依赖性组分,即 qE,与 535nm 处的吸收变化(ΔA(535))有关。在缺少玉米黄质的突变体 npq1 上进行的相同测量显示,在 525nm 处存在类似的光谱特征(ΔA(525))。我们研究了这些红移是否可能是由于结合在相邻光捕获复合物 II(LHCII)三聚体周围 V1 结合位点上的叶黄素、玉米黄质和紫黄质的同源二聚体之间的激子相互作用引起的。这些色素对的相对几何形状的估计是从 LHCII 的结构中获得的。使用时间相关的密度泛函理论方法(TD-DFT)探测了玉米黄质和紫黄质二聚体的激子耦合。计算表明,使用已发表的 LHCII 结构形成的玉米黄质或紫黄质分子之间的二聚体导致吸收蓝移,这是典型的 H 型(平行)几何形状。相比之下,如果 LHCII 结构的体积被修改以反映形成 ΔpH 时发生的膜厚度变化,则玉米黄质和紫黄质二聚体都采用 J 型(共线)几何形状,并且所得光谱位移到红色区域。这些预测的红移幅度与实验幅度非常吻合。因此,我们得出结论,观察到的叶黄素红移是由于 LHCII 聚集和 qE 形成过程中膜厚度变化的组合引起的。因此,ΔA(535)可以被认为是 qE 形成时 LHCII 三聚体之间聚集的“标志物”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验