Suppr超能文献

短吻鮈鮈和近缘种的 AFLP 系统发育(鮈鮈科:鮈鮈属)在多个分歧水平上提供了分辨率。

AFLP phylogeny of the snubnose darters and allies (Percidae: Etheostoma) provides resolution across multiple levels of divergence.

机构信息

Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.

出版信息

Mol Phylogenet Evol. 2010 Dec;57(3):1253-9. doi: 10.1016/j.ympev.2010.10.007. Epub 2010 Oct 20.

Abstract

The snubnose darters (Percidae: subgenus Ulocentra) are a group of small, brightly colored North American freshwater fish belonging to the genus Etheostoma. Phylogenetic relationships among snubnose species have been a challenge to resolve at all levels of divergence, from the monophyly of species to deeper relationships among subgenera. Here, we used amplified fragment length polymorphisms (AFLPs) to estimate phylogenetic relationships among species from three closely related subgenera: Ulocentra, Etheostoma, and Nanostoma. With nearly complete sampling of recognized species, our analysis yielded a robust tree with statistical support at all nodes. Support was strongest for shallower relationships; support for internal nodes was either comparable to or greater than that of previous studies based on mitochondrial sequence data. Most recovered relationships were consistent with earlier hypotheses based on morphology or mtDNA sequences, with the exception of Etheostoma histrio, which was recovered as sister to Ulocentra. Our analysis indicates that careful use of AFLPs can yield statistically robust estimates of evolutionary relationships across multiple levels of divergence.

摘要

短吻狗鱼(鲈形目:亚属 Ulocentra)是一群小型、色彩鲜艳的北美淡水鱼,属于 Etheostoma 属。在所有分歧水平上,包括物种的单系性到亚属之间更深层次的关系,短吻狗鱼物种之间的系统发育关系一直是一个难以解决的问题。在这里,我们使用扩增片段长度多态性(AFLPs)来估计来自三个密切相关亚属的物种之间的系统发育关系:Ulocentra、Etheostoma 和 Nanostoma。通过对公认物种的近乎完整采样,我们的分析产生了一棵具有统计支持的强壮树,在所有节点上都有支持。支持最强的是较浅的关系;内部节点的支持与基于线粒体序列数据的先前研究相当或更大。大多数恢复的关系与基于形态或 mtDNA 序列的早期假说一致,除了 Etheostoma histrio,它被恢复为 Ulocentra 的姐妹群。我们的分析表明,谨慎使用 AFLPs 可以在多个分歧水平上产生具有统计稳健性的进化关系估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验