Suppr超能文献

人类 CRFR2{alpha} G 蛋白偶联受体识别激素的结构基础。

Structural basis for hormone recognition by the Human CRFR2{alpha} G protein-coupled receptor.

机构信息

Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA.

出版信息

J Biol Chem. 2010 Dec 17;285(51):40351-61. doi: 10.1074/jbc.M110.186072. Epub 2010 Oct 21.

Abstract

The mammalian corticotropin releasing factor (CRF)/urocortin (Ucn) peptide hormones include four structurally similar peptides, CRF, Ucn1, Ucn2, and Ucn3, that regulate stress responses, metabolism, and cardiovascular function by activating either of two related class B G protein-coupled receptors, CRFR1 and CRFR2. CRF and Ucn1 activate both receptors, whereas Ucn2 and Ucn3 are CRFR2-selective. The molecular basis for selectivity is unclear. Here, we show that the purified N-terminal extracellular domains (ECDs) of human CRFR1 and the CRFR2α isoform are sufficient to discriminate the peptides, and we present three crystal structures of the CRFR2α ECD bound to each of the Ucn peptides. The CRFR2α ECD forms the same fold observed for the CRFR1 and mouse CRFR2β ECDs but contains a unique N-terminal α-helix formed by its pseudo signal peptide. The CRFR2α ECD peptide-binding site architecture is similar to that of CRFR1, and binding of the α-helical Ucn peptides closely resembles CRF binding to CRFR1. Comparing the electrostatic surface potentials of the ECDs suggests a charge compatibility mechanism for ligand discrimination involving a single amino acid difference in the receptors (CRFR1 Glu104/CRFR2α Pro-100) at a site proximate to peptide residue 35 (Arg in CRF/Ucn1, Ala in Ucn2/3). CRFR1 Glu-104 acts as a selectivity filter preventing Ucn2/3 binding because the nonpolar Ala-35 is incompatible with the negatively charged Glu-104. The structures explain the mechanisms of ligand recognition and discrimination and provide a molecular template for the rational design of therapeutic agents selectively targeting these receptors.

摘要

哺乳动物促肾上腺皮质激素释放因子(CRF)/尿皮质素(Ucn)肽激素包括四个结构相似的肽,CRF、Ucn1、Ucn2 和 Ucn3,它们通过激活两种相关的 B 类 G 蛋白偶联受体 CRFR1 和 CRFR2 来调节应激反应、代谢和心血管功能。CRF 和 Ucn1 激活这两种受体,而 Ucn2 和 Ucn3 是 CRFR2 选择性的。选择性的分子基础尚不清楚。在这里,我们表明人 CRFR1 和 CRFR2α 同工型的纯化的 N 端细胞外结构域(ECD)足以区分这些肽,并且我们呈现了与每个 Ucn 肽结合的 CRFR2α ECD 的三个晶体结构。CRFR2α ECD 形成与 CRFR1 和小鼠 CRFR2β ECD 相同的折叠,但包含由其伪信号肽形成的独特的 N 端α-螺旋。CRFR2α ECD 的肽结合位点结构与 CRFR1 相似,并且α-螺旋 Ucn 肽的结合与 CRF 与 CRFR1 的结合非常相似。比较 ECDs 的静电表面电势表明,配体识别的电荷兼容性机制涉及受体中单个氨基酸的差异(CRFR1Glu104/CRFR2αPro-100)在接近肽残基 35(CRF/Ucn1 中的 Arg,Ucn2/3 中的 Ala)的位点。CRFR1Glu-104 充当选择性过滤器,防止 Ucn2/3 结合,因为非极性 Ala-35 与带负电荷的 Glu-104 不兼容。这些结构解释了配体识别和区分的机制,并为这些受体的选择性治疗剂的合理设计提供了分子模板。

相似文献

1
Structural basis for hormone recognition by the Human CRFR2{alpha} G protein-coupled receptor.
J Biol Chem. 2010 Dec 17;285(51):40351-61. doi: 10.1074/jbc.M110.186072. Epub 2010 Oct 21.
2
Cardiac CRFR1 Expression Is Elevated in Human Heart Failure and Modulated by Genetic Variation and Alternative Splicing.
Endocrinology. 2016 Dec;157(12):4865-4874. doi: 10.1210/en.2016-1448. Epub 2016 Oct 18.
3
Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1.
J Biol Chem. 2008 Nov 21;283(47):32900-12. doi: 10.1074/jbc.M805749200. Epub 2008 Sep 17.
4
Glucocorticoids differentially regulate the expression of CRFR1 and CRFR2α in MIN6 insulinoma cells and rodent islets.
Endocrinology. 2011 Jan;152(1):138-50. doi: 10.1210/en.2010-0791. Epub 2010 Nov 24.
7
9
10
Urocortins: CRF's siblings and their potential role in anxiety, depression and alcohol drinking behavior.
Alcohol. 2012 Jun;46(4):349-57. doi: 10.1016/j.alcohol.2011.10.007. Epub 2012 Mar 22.

引用本文的文献

1
Exploring the Microbial Peptides Derived from the Human Gut Microbiota to Regulate Class B GPCRS Using an In Silico Approach.
ACS Omega. 2025 Jul 23;10(30):33270-33287. doi: 10.1021/acsomega.5c03268. eCollection 2025 Aug 5.
2
Structural and Functional Insights into CRF Peptides and Their Receptors.
Biology (Basel). 2024 Feb 13;13(2):120. doi: 10.3390/biology13020120.
4
Chronic UCN2 treatment desensitizes CRHR2 and improves insulin sensitivity.
Nat Commun. 2023 Jul 4;14(1):3953. doi: 10.1038/s41467-023-39597-w.
5
Multiplexed selectivity screening of anti-GPCR antibodies.
Sci Adv. 2023 May 3;9(18):eadf9297. doi: 10.1126/sciadv.adf9297.
6
Urocortin stimulates the ERK1/2 signaling pathway and the proliferation of HeLa cells via CRF receptor 1.
FEBS Open Bio. 2023 May;13(5):818-832. doi: 10.1002/2211-5463.13602. Epub 2023 Apr 2.
7
New Insights into the Structure and Function of Class B1 GPCRs.
Endocr Rev. 2023 May 8;44(3):492-517. doi: 10.1210/endrev/bnac033.
10
Advances in therapeutic peptides targeting G protein-coupled receptors.
Nat Rev Drug Discov. 2020 Jun;19(6):389-413. doi: 10.1038/s41573-020-0062-z. Epub 2020 Mar 19.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Perifornical Urocortin-3 mediates the link between stress-induced anxiety and energy homeostasis.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8393-8. doi: 10.1073/pnas.1003969107. Epub 2010 Apr 19.
4
Emerging role of alternative splicing of CRF1 receptor in CRF signaling.
Acta Biochim Pol. 2010;57(1):1-13. Epub 2010 Mar 16.
5
Dimeric arrangement of the parathyroid hormone receptor and a structural mechanism for ligand-induced dissociation.
J Biol Chem. 2010 Apr 16;285(16):12435-44. doi: 10.1074/jbc.M109.093138. Epub 2010 Feb 19.
6
Corticotropin-releasing factor receptors and urocortins, links between the brain and the heart.
Eur J Pharmacol. 2010 Apr 25;632(1-3):1-6. doi: 10.1016/j.ejphar.2010.01.027. Epub 2010 Feb 2.
8
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
9
Immediate and sustained blood pressure lowering by urocortin 2: a novel approach to antihypertensive therapy?
Hypertension. 2009 Apr;53(4):739-44. doi: 10.1161/HYPERTENSIONAHA.108.125211. Epub 2009 Feb 9.
10
Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1.
J Biol Chem. 2008 Nov 21;283(47):32900-12. doi: 10.1074/jbc.M805749200. Epub 2008 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验