Suppr超能文献

在光系统 I 的受体限制条件下,一种能够进行替代电子分配的新型铁氧还蛋白蛋白 FdC1 增加。

FdC1, a novel ferredoxin protein capable of alternative electron partitioning, increases in conditions of acceptor limitation at photosystem I.

机构信息

Department of Plant Physiology, University of Osnabrück, Barbara Strasse 11, 49076 Osnabrück, Germany.

出版信息

J Biol Chem. 2011 Jan 7;286(1):50-9. doi: 10.1074/jbc.M110.161562. Epub 2010 Oct 21.

Abstract

In higher plants, [2Fe-2S] ferredoxin (Fd) proteins are the unique electron acceptors from photosystem I (PSI). Fds are soluble, and distribute electrons to many enzymes, including Fd:NADP(H) reductase (FNR), for the photoreduction of NADP(+). In addition to well studied [2Fe-2S] Fd proteins, higher plants also possess genes for significantly different, as yet uncharacterized Fd proteins, with extended C termini (FdCs). Whether these FdC proteins function as photosynthetic electron transfer proteins is not known. We examined whether these proteins play a role as alternative electron acceptors at PSI, using quantitative RT-PCR to follow how their expression changes in response to acceptor limitation at PSI, in mutant Arabidopsis plants lacking 90-95% of photosynthetic [2Fe-2S] Fd. Expression of the gene encoding one FdC protein, FdC1, was identified as being strongly up-regulated. We confirmed that this protein was chloroplast localized and increased in abundance on PSI acceptor limitation. We purified the recombinant FdC1 protein, which exhibited a UV-visible spectrum consistent with a [2Fe-2S] cluster, confirmed by EPR analysis. Measurements of electron transfer show that FdC1 is capable of accepting electrons from PSI, but cannot support photoreduction of NADP(+). Whereas FdC1 was capable of electron transfer with FNR, redox potentiometry showed that it had a more positive redox potential than photosynthetic Fds by around 220 mV. These results indicate that FdC1 electron donation to FNR is prevented because it is thermodynamically unfavorable. Based on our data, we speculate that FdC1 has a specific function in conditions of acceptor limitation at PSI, and channels electrons away from NADP(+) photoreduction.

摘要

在高等植物中,[2Fe-2S] 铁氧还蛋白(Fd)蛋白是光系统 I(PSI)的唯一电子受体。Fds 是可溶性的,并将电子分配给许多酶,包括 Fd:NADP(H)还原酶(FNR),用于 NADP(+)的光还原。除了研究充分的[2Fe-2S] Fd 蛋白外,高等植物还具有基因编码显著不同的、尚未表征的 Fd 蛋白,其 C 端延长(FdC)。这些 FdC 蛋白是否作为光合作用电子转移蛋白发挥作用尚不清楚。我们通过定量 RT-PCR 检查这些蛋白是否作为 PSI 中的替代电子受体发挥作用,该方法用于跟踪在缺乏 90-95%光合作用[2Fe-2S] Fd 的拟南芥突变体植物中,PSI 接受体限制时其表达如何变化。鉴定到一个 FdC 蛋白(FdC1)的基因表达强烈上调。我们证实该蛋白定位于叶绿体,并在 PSI 接受体限制时丰度增加。我们纯化了重组 FdC1 蛋白,其紫外可见光谱与 EPR 分析证实的[2Fe-2S]簇一致。电子转移测量表明 FdC1 能够从 PSI 接受电子,但不能支持 NADP(+)的光还原。尽管 FdC1能够与 FNR 进行电子转移,但氧化还原电位测定表明,它的氧化还原电位比光合作用 Fds 正约 220 mV。这些结果表明,FdC1 向 FNR 的电子供体被阻止是因为热力学上不利。基于我们的数据,我们推测 FdC1 在 PSI 接受体限制的条件下具有特定的功能,并将电子从 NADP(+)光还原中转移开。

相似文献

2
FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors.
Front Plant Sci. 2018 Apr 4;9:410. doi: 10.3389/fpls.2018.00410. eCollection 2018.
3
Evolution of the acceptor side of photosystem I: ferredoxin, flavodoxin, and ferredoxin-NADP oxidoreductase.
Photosynth Res. 2017 Dec;134(3):235-250. doi: 10.1007/s11120-017-0338-2. Epub 2017 Feb 1.
5
A post genomic characterization of Arabidopsis ferredoxins.
Plant Physiol. 2004 Jan;134(1):255-64. doi: 10.1104/pp.103.032755. Epub 2003 Dec 18.
6
EPR studies of ferredoxin in spinach and cyanobacterial thylakoids related to photosystem I-driven NADP reduction.
Photosynth Res. 2024 Dec;162(2-3):239-250. doi: 10.1007/s11120-023-01072-4. Epub 2024 Mar 5.
7
Binding of ferredoxin NADP oxidoreductase (FNR) to plant photosystem I.
Biochim Biophys Acta Bioenerg. 2019 Sep 1;1860(9):689-698. doi: 10.1016/j.bbabio.2019.07.007. Epub 2019 Jul 20.

引用本文的文献

2
Ferredoxin C2 is required for chlorophyll biosynthesis and accumulation of photosynthetic antennae in Arabidopsis.
Plant Cell Environ. 2023 Nov;46(11):3287-3304. doi: 10.1111/pce.14667. Epub 2023 Jul 10.
3
Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus.
Front Plant Sci. 2022 Sep 2;13:980237. doi: 10.3389/fpls.2022.980237. eCollection 2022.
5
Current Knowledge on Mechanisms Preventing Photosynthesis Redox Imbalance in Plants.
Antioxidants (Basel). 2021 Nov 9;10(11):1789. doi: 10.3390/antiox10111789.
6
Encoding a Ferredoxin Protein With C-Terminus Extension Is Indispensable for Maize Growth.
Front Plant Sci. 2021 Apr 23;12:646359. doi: 10.3389/fpls.2021.646359. eCollection 2021.
7
The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I.
iScience. 2021 Jan 13;24(2):102059. doi: 10.1016/j.isci.2021.102059. eCollection 2021 Feb 19.
9
Carnitine metabolism in the human gut: characterization of the two-component carnitine monooxygenase CntAB from .
J Biol Chem. 2020 Sep 11;295(37):13065-13078. doi: 10.1074/jbc.RA120.014266. Epub 2020 Jul 21.
10
Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development.
PLoS One. 2019 Oct 24;14(10):e0223686. doi: 10.1371/journal.pone.0223686. eCollection 2019.

本文引用的文献

1
The use of chlorophyll fluorescence nomenclature in plant stress physiology.
Photosynth Res. 1990 Sep;25(3):147-50. doi: 10.1007/BF00033156.
2
Thioredoxin targets in plants: the first 30 years.
J Proteomics. 2009 Apr 13;72(3):452-74. doi: 10.1016/j.jprot.2008.12.002. Epub 2008 Dec 16.
3
A novel, anaerobically induced ferredoxin in Chlamydomonas reinhardtii.
FEBS Lett. 2009 Jan 22;583(2):325-9. doi: 10.1016/j.febslet.2008.12.018. Epub 2008 Dec 26.
4
Variable photosynthetic roles of two leaf-type ferredoxins in arabidopsis, as revealed by RNA interference.
Photochem Photobiol. 2008 Nov-Dec;84(6):1302-9. doi: 10.1111/j.1751-1097.2008.00411.x. Epub 2008 Jul 30.
5
Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana.
Physiol Plant. 2008 Jul;133(3):584-98. doi: 10.1111/j.1399-3054.2008.01112.x. Epub 2008 Jul 1.
6
Sorting signals, N-terminal modifications and abundance of the chloroplast proteome.
PLoS One. 2008 Apr 23;3(4):e1994. doi: 10.1371/journal.pone.0001994.
7
Altered photosynthetic electron channelling into cyclic electron flow and nitrite assimilation in a mutant of ferredoxin:NADP(H) reductase.
Plant Cell Environ. 2008 Jul;31(7):1017-28. doi: 10.1111/j.1365-3040.2008.01814.x. Epub 2008 Apr 8.
8
Role of Ferredoxin in the Energy Conversion Process of Photosynthesis.
Science. 1963 Apr 26;140(3565):378. doi: 10.1126/science.140.3565.378.
9
WoLF PSORT: protein localization predictor.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7. doi: 10.1093/nar/gkm259. Epub 2007 May 21.
10
Locating proteins in the cell using TargetP, SignalP and related tools.
Nat Protoc. 2007;2(4):953-71. doi: 10.1038/nprot.2007.131.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验