González María-Cruz, Cejudo Francisco Javier, Sahrawy Mariam, Serrato Antonio Jesús
Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain.
Antioxidants (Basel). 2021 Nov 9;10(11):1789. doi: 10.3390/antiox10111789.
Photosynthesis includes a set of redox reactions that are the source of reducing power and energy for the assimilation of inorganic carbon, nitrogen and sulphur, thus generating organic compounds, and oxygen, which supports life on Earth. As sessile organisms, plants have to face continuous changes in environmental conditions and need to adjust the photosynthetic electron transport to prevent the accumulation of damaging oxygen by-products. The balance between photosynthetic cyclic and linear electron flows allows for the maintenance of a proper NADPH/ATP ratio that is adapted to the plant's needs. In addition, different mechanisms to dissipate excess energy operate in plants to protect and optimise photosynthesis under adverse conditions. Recent reports show an important role of redox-based dithiol-disulphide interchanges, mediated both by classical and atypical chloroplast thioredoxins (TRXs), in the control of these photoprotective mechanisms. Moreover, membrane-anchored TRX-like proteins, such as HCF164, which transfer electrons from stromal TRXs to the thylakoid lumen, play a key role in the regulation of lumenal targets depending on the stromal redox poise. Interestingly, not all photoprotective players were reported to be under the control of TRXs. In this review, we discuss recent findings regarding the mechanisms that allow an appropriate electron flux to avoid the detrimental consequences of photosynthesis redox imbalances.
光合作用包括一系列氧化还原反应,这些反应是无机碳、氮和硫同化过程中还原力和能量的来源,从而生成有机化合物和氧气,而氧气维持着地球上的生命。作为固着生物,植物必须面对环境条件的持续变化,需要调整光合电子传递,以防止有害氧副产物的积累。光合循环电子流和线性电子流之间的平衡有助于维持适合植物需求的适当的NADPH/ATP比值。此外,植物中存在不同的机制来耗散过剩能量,以在不利条件下保护和优化光合作用。最近的报道表明,由经典和非典型叶绿体硫氧还蛋白(TRXs)介导的基于氧化还原的二硫醇-二硫化物交换在这些光保护机制的控制中发挥着重要作用。此外,膜锚定的类TRX蛋白,如HCF164,可将电子从基质TRXs转移到类囊体腔,根据基质氧化还原状态在腔靶点的调节中起关键作用。有趣的是,并非所有的光保护参与者都被报道受TRXs的控制。在这篇综述中,我们讨论了关于允许适当电子通量以避免光合作用氧化还原失衡的有害后果的机制的最新发现。