Suppr超能文献

具有屏蔽幂级数相互作用的流体的自洽奥恩斯坦-泽尔尼克逼近。

A self-consistent Ornstein-Zernike approximation for a fluid with a screened power series interaction.

机构信息

Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0213, Japan.

出版信息

J Chem Phys. 2010 Oct 21;133(15):154115. doi: 10.1063/1.3503590.

Abstract

We present a thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA) for a fluid of spherical particles with a pair potential given by a hard-core repulsion and screened power series (SPS) tails. We take advantage of the known analytic properties of the solution of the Ornstein-Zernike equation for the case in which the direct correlation function outside the repulsive core is given by the SPS tails [M. Yasutomi, J. Phys.: Condens. Matter 13, L255 (2001)]: c(r)=∑(n=1) (N)exp(-z(n)r)∑(τ=-1) (L(n) )K((n,τ))z(n) (τ+1)r(τ)  r>1. The analytic properties are rewritten so as to be optimally suited to the numerical computations. The SCOZA is known to provide very good overall thermodynamics, remarkably accurate critical point, and coexistence curve. In this paper, we present some numerical results for parameters in c(r) which are chosen to fit the Lennard-Jones potential. We show that both the energy and the compressibility paths lead to the same thermodynamics with high accuracy due to the thermodynamic consistency condition that has been enforced. The present method will be applicable to fluids with a large variety of smooth, realistic isotropic potentials where the pair potentials can be fitted by the SPS tails. The fitting procedure is superior to that by multi-Yukawa tails which is the only method presented so far.

摘要

我们提出了一种具有球形粒子的热力学自洽的奥恩斯坦-泽尔尼克近似(SCOZA),其对势能由硬球排斥和屏蔽幂级数(SPS)尾巴给出。我们利用了已知的奥恩斯坦-泽尔尼克方程解的解析特性,对于直接相关函数在排斥核外由 SPS 尾巴给出的情况[M. Yasutomi, J. Phys.: Condens. Matter 13, L255 (2001)]:c(r)=∑(n=1) (N)exp(-z(n)r)∑(τ=-1) (L(n) )K((n,τ))z(n) (τ+1)r(τ)  r>1. 解析特性被重写,以便最适合数值计算。SCOZA 已知可以提供非常好的整体热力学、非常准确的临界点和共存曲线。在本文中,我们给出了一些参数 c(r) 的数值结果,这些参数被选择来拟合 Lennard-Jones 势能。我们表明,由于强制了热力学一致性条件,能量和压缩性路径都以高精度导致相同的热力学。本方法将适用于具有各种平滑、现实各向同性势能的流体,其中对势能可以通过 SPS 尾巴进行拟合。拟合过程优于目前唯一提出的多 Yukawa 尾巴方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验