Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany.
J Chem Phys. 2010 Oct 21;133(15):154702. doi: 10.1063/1.3493464.
We study the excess free energy due to phase coexistence of fluids by Monte Carlo simulations using successive umbrella sampling in finite L×L×L boxes with periodic boundary conditions. Both the vapor-liquid phase coexistence of a simple Lennard-Jones fluid and the coexistence between A-rich and B-rich phases of a symmetric binary (AB) Lennard-Jones mixture are studied, varying the density ρ in the simple fluid or the relative concentration x(A) of A in the binary mixture, respectively. The character of phase coexistence changes from a spherical droplet (or bubble) of the minority phase (near the coexistence curve) to a cylindrical droplet (or bubble) and finally (in the center of the miscibility gap) to a slablike configuration of two parallel flat interfaces. Extending the analysis of Schrader et al., [Phys. Rev. E 79, 061104 (2009)], we extract the surface free energy γ(R) of both spherical and cylindrical droplets and bubbles in the vapor-liquid case and present evidence that for R→∞ the leading order (Tolman) correction for droplets has sign opposite to the case of bubbles, consistent with the Tolman length being independent on the sign of curvature. For the symmetric binary mixture, the expected nonexistence of the Tolman length is confirmed. In all cases and for a range of radii R relevant for nucleation theory, γ(R) deviates strongly from γ(∞) which can be accounted for by a term of order γ(∞)/γ(R)-1∝R(-2). Our results for the simple Lennard-Jones fluid are also compared to results from density functional theory, and we find qualitative agreement in the behavior of γ(R) as well as in the sign and magnitude of the Tolman length.
我们通过使用有限大小为 L×L×L 的盒子中的连续伞形采样的蒙特卡罗模拟研究了流体相共存的过剩自由能,这些盒子具有周期性边界条件。我们研究了简单 Lennard-Jones 流体的汽液相共存以及对称二元(AB)Lennard-Jones 混合物中 A 富相与 B 富相之间的共存,分别通过改变简单流体中的密度 ρ 或二元混合物中 A 的相对浓度 x(A)。相共存的特征从少数相的球形液滴(或气泡)(在共存曲线附近)变为圆柱形液滴(或气泡),最后(在混溶性间隙的中心)变为两个平行平面之间的板状构型。扩展 Schrader 等人的分析,[Phys. Rev. E 79, 061104 (2009)],我们提取了汽液情况下球形和圆柱形液滴和气泡的表面自由能 γ(R),并提供了证据表明,对于 R→∞,液滴的主导阶(Tolman)修正的符号与气泡的符号相反,与 Tolman 长度独立于曲率符号一致。对于对称二元混合物,确认了不存在 Tolman 长度的预期。在所有情况下以及对于与成核理论相关的一系列半径 R,γ(R)强烈偏离 γ(∞),这可以由一个阶数为 γ(∞)/γ(R)-1∝R(-2)的项来解释。我们对简单 Lennard-Jones 流体的结果也与密度泛函理论的结果进行了比较,我们发现 γ(R)的行为以及 Tolman 长度的符号和大小在定性上是一致的。