Suppr超能文献

基于时空实地采样计数数据的预测多产白纹伊蚊和致倦库蚊栖息地的广义特征值频率分布的地理制图。

Geomapping generalized eigenvalue frequency distributions for predicting prolific Aedes albopictus and Culex quinquefasciatus habitats based on spatiotemporal field-sampled count data.

机构信息

School of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, 845, 19th Street South, Birmingham, AL 35294-2170, United States.

出版信息

Acta Trop. 2011 Feb;117(2):61-8. doi: 10.1016/j.actatropica.2010.10.002. Epub 2010 Oct 20.

Abstract

Marked spatiotemporal variabilities in mosquito infection of arboviruses require adaptive strategies for determining optimal field-sampling timeframes, pool screening, and data analyses. In particular, the error distribution and aggregation patterns of adult arboviral mosquitoes can vary significantly by species, which can statistically bias analyses of spatiotemporal-sampled predictor variables generating misinterpretation of prolific habitat surveillance locations. Currently, there is a lack of reliable and consistent measures of risk exposure based on field-sampled georeferenced explanatory covariates which can compromise quantitative predictions generated from arboviral mosquito surveillance models for implementing larval control strategies targeting productive habitats. In this research we used spatial statistics and QuickBird visible and near-infra-red data for determining trapping sites that were related to Culex quinquefasciatus and Aedes albopictus species abundance and distribution in Birmingham, Alabama. Initially, a Land Use Land Cover (LULC) model was constructed from multiple spatiotemporal-sampled georeferenced predictors and the QuickBird data. A Poisson regression model with a non-homogenous, gamma-distributed mean then decomposed the data into positive and negative spatial filter eigenvectors. An autoregressive process in the error term then was used to derive the sample distribution of the Moran's I statistic for determining latent autocorrelation components in the model. Spatial filter algorithms established means, variances, distributional functions, and pairwise correlations for the predictor variables. In doing so, the eigenfunction spatial filter quantified the residual autocorrelation error in the mean response term of the model as a linear combination of various distinct Cx. quinquefasciatus and Ae. albopictus habitat map patterns. The analyses revealed 18-27% redundant information in the data. Prolific habitats of Cx. quinquefasciatus and Ae. albopictus can be accurately spatially targeted based on georeferenced field-sampled count data using QuickBird data, LULC explanatory covariates, robust negative binomial regression estimates and space-time eigenfunctions.

摘要

蚊媒病毒感染的时空变化显著,这就需要制定适应性策略来确定最佳野外采样时间框架、混合筛选和数据分析。特别是,成蚊的病毒感染误差分布和聚集模式在不同物种间差异显著,这可能会对时空采样预测变量的分析产生统计学偏差,从而导致对丰富生境监测点的错误解释。目前,缺乏基于野外采样地理参考解释性协变量的可靠和一致的风险暴露衡量标准,这可能会影响到针对丰富生境的蚊虫监测模型所产生的定量预测,从而影响到针对幼虫的控制策略的实施。在这项研究中,我们使用空间统计学和 QuickBird 可见光和近红外数据来确定与阿拉巴马州伯明翰市的库蚊和白纹伊蚊物种丰度和分布相关的诱捕地点。首先,从多个时空采样的地理参考预测因子和 QuickBird 数据构建了一个土地利用土地覆盖模型。然后,使用具有非均匀伽马分布均值的泊松回归模型对数据进行分解,将数据分解为正和负空间滤波器特征向量。然后,在误差项中使用自回归过程来推导出 Moran's I 统计量的样本分布,以确定模型中的潜在自相关分量。空间滤波器算法为预测变量建立了均值、方差、分布函数和两两相关。这样,特征函数空间滤波器就将模型中均值响应项的剩余自相关误差量化为各种不同的 Cx. quinquefasciatus 和 Ae. albopictus 生境图谱模式的线性组合。分析结果表明,数据中存在 18-27%的冗余信息。基于 QuickBird 数据、土地利用土地覆盖解释性协变量、稳健的负二项回归估计和时空特征函数,可以准确地对库蚊和白纹伊蚊的丰富生境进行空间定位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验