Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado at Denver, Aurora, CO 80045, USA.
Free Radic Biol Med. 2011 Jan 1;50(1):14-26. doi: 10.1016/j.freeradbiomed.2010.10.694. Epub 2010 Oct 21.
4-Hydroxy-2-nonenal (4-HNE) is a lipid peroxidation product formed during oxidative stress that can alter protein function via adduction of nucleophilic amino acid residues. 4-HNE detoxification occurs mainly via glutathione (GSH) conjugation and transporter-mediated efflux. This results in a net loss of cellular GSH, and restoration of GSH homeostasis requires de novo GSH biosynthesis. The rate-limiting step in GSH biosynthesis is catalyzed by glutamate-cysteine ligase (GCL), a heterodimeric holoenzyme composed of a catalytic (GCLC) and a modulatory (GCLM) subunit. The relative levels of the GCL subunits are a major determinant of cellular GSH biosynthetic capacity and 4-HNE induces the expression of both GCL subunits. In this study, we demonstrate that 4-HNE can alter GCL holoenzyme formation and activity via direct posttranslational modification of the GCL subunits in vitro. 4-HNE directly modified Cys553 of GCLC and Cys35 of GCLM in vitro, which significantly increased monomeric GCLC enzymatic activity, but reduced GCL holoenzyme activity and formation of the GCL holoenzyme complex. In silico molecular modeling studies also indicate these residues are likely to be functionally relevant. Within a cellular context, this novel posttranslational regulation of GCL activity could significantly affect cellular GSH homeostasis and GSH-dependent detoxification during periods of oxidative stress.
4- 羟壬烯醛(4-HNE)是氧化应激过程中形成的一种脂质过氧化产物,可通过亲核氨基酸残基的加成改变蛋白质功能。4-HNE 的解毒主要通过谷胱甘肽(GSH)缀合和转运体介导的外排来实现。这导致细胞内 GSH 的净损失,而 GSH 动态平衡的恢复需要从头合成 GSH。GSH 生物合成的限速步骤由谷氨酸 - 半胱氨酸连接酶(GCL)催化,该酶是一种由催化(GCLC)和调节(GCLM)亚基组成的异二聚体全酶。GCL 亚基的相对水平是细胞内 GSH 生物合成能力的主要决定因素,4-HNE 诱导两种 GCL 亚基的表达。在这项研究中,我们证明 4-HNE 可以通过体外直接翻译后修饰 GCL 亚基来改变 GCL 全酶的形成和活性。4-HNE 直接修饰 GCLC 的 Cys553 和 GCLM 的 Cys35 残基,这显著增加了单体 GCLC 的酶活性,但降低了 GCL 全酶活性和 GCL 全酶复合物的形成。计算机分子建模研究也表明这些残基可能具有功能相关性。在细胞环境中,GCL 活性的这种新的翻译后调节可能会显著影响氧化应激期间细胞内 GSH 动态平衡和 GSH 依赖性解毒。