Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA.
Bull Math Biol. 2011 Aug;73(8):1754-73. doi: 10.1007/s11538-010-9590-8. Epub 2010 Oct 23.
Epstein-Barr virus (EBV) infects and can persist in a majority of people worldwide. Within an infected host, EBV targets two major cell types, B cells and epithelial cells, and viruses emerging from one cell type preferentially infect the other. We use mathematical models to understand why EBV infects epithelial cells when B cells serve as a stable refuge for the virus and how switching between infecting each cell type affects virus persistence and shedding. We propose a mathematical model to describe the regulation of EBV infection within a host. This model is used to study the effects of parameter values on optimal viral strategies for transmission, persistence, and intrahost competition. Most often, the optimal strategy to maximize transmission is for viruses to infect epithelial cells, but the optimal strategy for maximizing intrahost competition is for viruses to mainly infect B cells. Applying the results of the within-host model, we derive a model of EBV dynamics in a homogeneous population of hosts that includes superinfection. We use this model to study the conditions necessary for invasion and coexistence of various viral strategies at the population level. When the importance of intrahost competition is weak, we show that coexistence of different strategies is possible.
爱泼斯坦-巴尔病毒(EBV)感染并能在全球大多数人中持续存在。在受感染的宿主中,EBV 以两种主要细胞类型为目标,B 细胞和上皮细胞,并且来自一种细胞类型的病毒优先感染另一种细胞类型。我们使用数学模型来理解为什么 EBV 在 B 细胞作为病毒的稳定避难所时感染上皮细胞,以及在感染每种细胞类型之间切换如何影响病毒的持续存在和脱落。我们提出了一个数学模型来描述宿主内 EBV 感染的调节。该模型用于研究参数值对传播、持久性和宿主内竞争的最佳病毒策略的影响。通常,最大程度地提高传播的最佳策略是病毒感染上皮细胞,但最大程度地提高宿主内竞争的最佳策略是病毒主要感染 B 细胞。应用宿主内模型的结果,我们推导出了一个包括超感染的宿主均匀群体中 EBV 动力学的模型。我们使用该模型研究了在群体水平上各种病毒策略入侵和共存的必要条件。当宿主内竞争的重要性较弱时,我们表明不同策略的共存是可能的。