Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA.
J Phys Chem B. 2010 Nov 25;114(46):15389-93. doi: 10.1021/jp107886e. Epub 2010 Oct 25.
Glycoside hydrolases cleave the glycosidic linkage between two carbohydrate moieties. They are among the most efficient enzymes currently known. β-Xylosidases from glycoside hydrolase family 43 hydrolyze the nonreducing ends of xylooligomers using an inverting mechanism. Although the general mechanism and catalytic amino acid residues of β-xylosidases are known, the nature of the reaction's transition state and the conformations adopted by the glycon xylopyranosyl ring along the reaction pathway are still elusive. In this work, the xylobiose hydrolysis reaction catalyzed by XynB3, a β-xylosidase produced by Geobacillus stearothermophilus T-6, was explicitly modeled using first-principles quantum mechanics/molecular mechanics Car-Parrinello metadynamics. We present the reaction's free energy surface and its previously undetermined reaction pathway. The simulations also show that the glycon xylopyranosyl ring proceeds through a (2,5)B-type transition state with significant oxacarbenium ion character.
糖苷水解酶裂解两个碳水化合物部分之间的糖苷键。它们是目前已知的最有效的酶之一。糖苷水解酶家族 43 的β-木糖苷酶使用反转机制水解木寡糖的非还原端。尽管β-木糖苷酶的一般机制和催化氨基酸残基是已知的,但反应过渡态的性质以及糖基木吡喃糖环在反应途径中采用的构象仍然难以捉摸。在这项工作中,使用第一性原理量子力学/分子力学 Car-Parrinello 元动力学明确地模拟了嗜热脂肪芽孢杆菌 T-6 产生的β-木糖苷酶 XynB3 催化的纤维二糖水解反应。我们提出了反应的自由能表面及其以前未确定的反应途径。模拟还表明,糖基木吡喃糖环通过具有显著氧杂碳正离子特征的(2,5)B 型过渡态进行。