Neural Injury Research Center, Department of Neurology, Asan Institute for Life Science, University of Ulsan, College of Medicine, Seoul 138-736, Korea.
Mol Brain. 2010 Oct 26;3(1):30. doi: 10.1186/1756-6606-3-30.
Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress.Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity.The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological diseases, further insight into the contribution of zinc dynamics and metallothionein-3 function may help provide ways to effectively regulate these processes in brain cells.
锌稳态失调已被认为是急性脑损伤细胞死亡的重要机制。星形胶质细胞和神经元中游离或组织化学反应性锌水平的增加被认为是这些细胞在缺血和创伤中死亡的主要原因之一。尽管锌稳态失调可能通过多种途径导致细胞死亡,但主要途径似乎涉及氧化应激。最近,我们发现自噬小体(包括自溶酶体)中锌的增加是培养的脑细胞在氧化应激条件下发生溶酶体膜通透性和细胞死亡的必要条件。在这个过程中,锌的来源可能是氧化还原敏感的锌结合蛋白,如金属硫蛋白,它们在氧化条件下释放锌。在金属硫蛋白中,金属硫蛋白-3 在中枢神经系统中特别丰富,但它在该组织中的生理作用尚未得到很好的确立。与其他金属硫蛋白一样,金属硫蛋白-3 可能作为金属解毒剂发挥作用,但也已知其抑制神经突生长,有时还会促进神经元死亡,可能是作为有毒锌释放的来源。此外,金属硫蛋白-3 调节溶酶体功能。在缺乏金属硫蛋白-3 的情况下,溶酶体相关膜蛋白-1 和 -2 发生变化,某些溶酶体酶的减少导致自噬通量减少。这可能对细胞存活产生双重影响。在急性氧化损伤中,金属硫蛋白-3 缺失细胞中的锌稳态失调和溶酶体膜通透性降低,导致细胞死亡减少。但从长远来看,溶酶体功能的降低可能导致异常蛋白质的积累,并引起细胞毒性。锌和金属硫蛋白-3 在自噬和/或溶酶体功能中的作用才刚刚开始被研究。鉴于自噬和溶酶体可能在各种神经疾病的发病机制中发挥重要作用的证据,进一步深入了解锌动态和金属硫蛋白-3 功能的贡献可能有助于提供有效调节脑细胞中这些过程的方法。