Suppr超能文献

细胞溶质 pH 对囊性纤维化跨膜电导调节因子 (CFTR) 活性和染料木黄酮结合的调节。

Modulation of cystic fibrosis transmembrane conductance regulator (CFTR) activity and genistein binding by cytosolic pH.

机构信息

Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, 16148 Genoa, Italy.

出版信息

J Biol Chem. 2010 Dec 31;285(53):41591-6. doi: 10.1074/jbc.M110.166850. Epub 2010 Oct 25.

Abstract

Potentiators are molecules that increase the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). Some potentiators can also inhibit CFTR at higher concentrations. The activating binding site is thought to be located at the interface of the dimer formed by the two nucleotide-binding domains. We have hypothesized that if binding of potentiators involves titratable residues forming salt bridges, then modifications of cytosolic pH (pH(i)) would alter the binding affinity. Here, we analyzed the effect of pH(i) on CFTR activation and on the binding of genistein, a well known CFTR potentiator. We found that pH(i) does modify CFTR maximum current (I(m)) and half-activation concentration (K(d)): I(m) = 127.7, 185.5, and 231.8 μA/cm(2) and K(d) = 32.7, 56.6 and 71.9 μm at pH 6, 7.35, and 8, respectively. We also found that the genistein apparent dissociation constant for activation (K(a)) increased at alkaline pH(i), near cysteine pK (K(a) = 1.83, 1.81 and 4.99 μm at pH(i) 6, 7.35, and 8, respectively), suggesting the involvement of cysteines in the binding site. Mutations of cysteine residues predicted to be within (Cys-491) or outside (Cys-1344) the potentiator-binding site showed that Cys-491 is responsible for the sensitivity of potentiator binding to alkaline pH(i). Effects of pH(i) on inhibition by high genistein doses were also analyzed. Our results extend previous data about multiple effects of pH(i) on CFTR activity and demonstrate that binding of potentiators involves salt bridge formation with amino acids of nucleotide-binding domain 1.

摘要

增效剂是能够增加囊性纤维化跨膜电导调节因子 (CFTR) 活性的分子。一些增效剂在更高浓度下也可以抑制 CFTR。激活结合位点被认为位于由两个核苷酸结合域形成的二聚体的界面上。我们假设如果增效剂的结合涉及形成盐桥的可滴定残基,那么细胞内 pH(pH(i))的变化会改变结合亲和力。在这里,我们分析了 pH(i) 对 CFTR 激活以及染料木黄酮(一种已知的 CFTR 增效剂)结合的影响。我们发现 pH(i) 确实会改变 CFTR 的最大电流(I(m))和半激活浓度(K(d)):I(m) 分别为 127.7、185.5 和 231.8 μA/cm(2),K(d) 分别为 32.7、56.6 和 71.9 μm,在 pH 6、7.35 和 8 时。我们还发现,碱性 pH(i) 下染料木黄酮的表观激活解离常数(K(a))增加,接近半胱氨酸 pK(K(a) 在 pH(i) 为 6、7.35 和 8 时分别为 1.83、1.81 和 4.99 μm),表明半胱氨酸参与了结合位点。突变预测位于(Cys-491)或(Cys-1344)之外的半胱氨酸残基的结合位点表明,Cys-491 负责增效剂结合对碱性 pH(i) 的敏感性。还分析了 pH(i) 对高剂量染料木黄酮抑制的影响。我们的结果扩展了之前关于 pH(i) 对 CFTR 活性的多种影响的数据,并证明增效剂的结合涉及与核苷酸结合域 1 的氨基酸形成盐桥。

相似文献

1
Modulation of cystic fibrosis transmembrane conductance regulator (CFTR) activity and genistein binding by cytosolic pH.
J Biol Chem. 2010 Dec 31;285(53):41591-6. doi: 10.1074/jbc.M110.166850. Epub 2010 Oct 25.
5
A quantitative description of the activation and inhibition of CFTR by potentiators: Genistein.
FEBS Lett. 2005 Jul 18;579(18):3979-83. doi: 10.1016/j.febslet.2005.06.026.
7
Effect of cytosolic pH on epithelial Na+ channel in normal and cystic fibrosis sweat ducts.
J Membr Biol. 2008 Sep-Oct;225(1-3):1-11. doi: 10.1007/s00232-008-9126-4. Epub 2008 Oct 21.

引用本文的文献

2
The Role of Genistein in Mammalian Reproduction.
Molecules. 2023 Nov 5;28(21):7436. doi: 10.3390/molecules28217436.
3
Anion-Transport Mechanism of a Triazole-Bearing Derivative of Prodigiosine: A Candidate for Cystic Fibrosis Therapy.
Front Pharmacol. 2018 Aug 7;9:852. doi: 10.3389/fphar.2018.00852. eCollection 2018.
4
Isoflavones, their Glycosides and Glycoconjugates. Synthesis and Biological Activity.
Curr Org Chem. 2017 Jan;21(3):218-235. doi: 10.2174/1385272820666160928120822.
5
Potentiators exert distinct effects on human, murine, and Xenopus CFTR.
Am J Physiol Lung Cell Mol Physiol. 2016 Aug 1;311(2):L192-207. doi: 10.1152/ajplung.00056.2016. Epub 2016 Jun 10.
7
Glyceollin transport, metabolism, and effects on p-glycoprotein function in Caco-2 cells.
J Med Food. 2014 Apr;17(4):462-71. doi: 10.1089/jmf.2013.0115. Epub 2014 Jan 29.
8
A potentiator induces conformational changes on the recombinant CFTR nucleotide binding domains in solution.
Cell Mol Life Sci. 2012 Nov;69(21):3701-13. doi: 10.1007/s00018-012-1049-7. Epub 2012 Jul 3.
9
Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands.
Am J Physiol Regul Integr Comp Physiol. 2011 Jul;301(1):R83-96. doi: 10.1152/ajpregu.00648.2010. Epub 2011 Apr 6.

本文引用的文献

1
Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18825-30. doi: 10.1073/pnas.0904709106. Epub 2009 Oct 21.
3
Molecular models of the open and closed states of the whole human CFTR protein.
Cell Mol Life Sci. 2009 Nov;66(21):3469-86. doi: 10.1007/s00018-009-0133-0. Epub 2009 Aug 26.
4
Molecular modeling of the heterodimer of human CFTR's nucleotide-binding domains using a protein-protein docking approach.
J Mol Graph Model. 2009 Apr;27(7):822-8. doi: 10.1016/j.jmgm.2008.12.005. Epub 2008 Dec 24.
8
The ABC protein turned chloride channel whose failure causes cystic fibrosis.
Nature. 2006 Mar 23;440(7083):477-83. doi: 10.1038/nature04712.
9
Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules.
Am J Physiol Lung Cell Mol Physiol. 2006 Jun;290(6):L1117-30. doi: 10.1152/ajplung.00169.2005. Epub 2006 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验