Suppr超能文献

相似文献

1
Elementary steps at the surface of ice crystals visualized by advanced optical microscopy.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19702-7. doi: 10.1073/pnas.1008866107. Epub 2010 Oct 25.
2
Quasi-liquid layers on ice crystal surfaces are made up of two different phases.
Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1052-5. doi: 10.1073/pnas.1116685109. Epub 2012 Jan 9.
3
Two types of quasi-liquid layers on ice crystals are formed kinetically.
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1749-53. doi: 10.1073/pnas.1521607113. Epub 2016 Feb 1.
4
Anisotropy in the crystal growth of hexagonal ice, I(h).
J Chem Phys. 2012 Sep 7;137(9):094702. doi: 10.1063/1.4748377.
5
How Do Ice Crystals Grow inside Quasiliquid Layers?
Phys Rev Lett. 2019 Jan 18;122(2):026102. doi: 10.1103/PhysRevLett.122.026102.
6
Single-crystal ice surfaces unveil connection between macroscopic and molecular structure.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5349-5354. doi: 10.1073/pnas.1703056114. Epub 2017 May 9.
7
Best face forward: crystal-face competition at the ice-water interface.
J Phys Chem B. 2014 Jul 17;118(28):7972-80. doi: 10.1021/jp500956w. Epub 2014 May 13.
8
Growth suppression of ice crystal basal face in the presence of a moderate ice-binding protein does not confer hyperactivity.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7479-7484. doi: 10.1073/pnas.1807461115. Epub 2018 Jul 2.
9
In situ observation of elementary growth processes of protein crystals by advanced optical microscopy.
Protein Pept Lett. 2012 Jul;19(7):743-60. doi: 10.2174/092986612800793118.
10
Ice crystals specifically decorate hydrophilic sites on freeze-fractured models membranes.
Ultramicroscopy. 1981;6(3):259-66. doi: 10.1016/s0304-3991(81)80161-1.

引用本文的文献

1
Globular pattern formation of hierarchical ceria nanoarchitectures.
Commun Chem. 2024 Jun 12;7(1):128. doi: 10.1038/s42004-024-01199-y.
2
In-layer inhomogeneity of molecular dynamics in quasi-liquid layers of ice.
Commun Chem. 2024 May 29;7(1):117. doi: 10.1038/s42004-024-01197-0.
3
Crystal growth in confinement.
Nat Commun. 2022 Nov 16;13(1):6990. doi: 10.1038/s41467-022-34330-5.
4
Step-bunching instability of growing interfaces between ice and supercooled water.
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2115955119. doi: 10.1073/pnas.2115955119. Epub 2022 Mar 1.
5
Observation of sublimation of ice using terahertz spectroscopy.
R Soc Open Sci. 2020 Sep 30;7(9):192083. doi: 10.1098/rsos.192083. eCollection 2020 Sep.
6
Real-Time Measurement of Protein Crystal Growth Rates within the Microfluidic Device to Understand the Microspace Effect.
ACS Omega. 2020 Jul 8;5(28):17199-17206. doi: 10.1021/acsomega.0c01285. eCollection 2020 Jul 21.
7
Microstructural characterization of snow, firn and ice.
Philos Trans A Math Phys Eng Sci. 2019 Jun 3;377(2146):20180162. doi: 10.1098/rsta.2018.0162.
8
The Surface of Ice under Equilibrium and Nonequilibrium Conditions.
Acc Chem Res. 2019 Apr 16;52(4):1006-1015. doi: 10.1021/acs.accounts.8b00615. Epub 2019 Mar 29.
10
Thermodynamic origin of surface melting on ice crystals.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):E6741-E6748. doi: 10.1073/pnas.1608888113. Epub 2016 Oct 17.

本文引用的文献

1
The structures and functions of ice crystal-controlling proteins from bacteria.
J Biosci Bioeng. 2002;94(6):492-6. doi: 10.1016/s1389-1723(02)80185-2.
2
Microphysics and heterogeneous chemistry of polar stratospheric clouds.
Annu Rev Phys Chem. 1997;48:785-822. doi: 10.1146/annurev.physchem.48.1.785.
3
Antifreeze Proteins: Structures and Mechanisms of Function.
Chem Rev. 1996 Mar 28;96(2):601-618. doi: 10.1021/cr950260c.
4
Hyperactive antifreeze protein from beetles.
Nature. 1997 Aug 21;388(6644):727-8. doi: 10.1038/41908.
5
Inhibition of growth of nonbasal planes in ice by fish antifreezes.
Proc Natl Acad Sci U S A. 1989 Feb;86(3):881-5. doi: 10.1073/pnas.86.3.881.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验