Microsoft Research.
IEEE Trans Vis Comput Graph. 2010 Nov-Dec;16(6):1090-9. doi: 10.1109/TVCG.2010.210.
In many common data analysis scenarios the data elements are logically grouped into sets. Venn and Euler style diagrams are a common visual representation of such set membership where the data elements are represented by labels or glyphs and sets are indicated by boundaries surrounding their members. Generating such diagrams automatically such that set regions do not intersect unless the corresponding sets have a non-empty intersection is a difficult problem. Further, it may be impossible in some cases if regions are required to be continuous and convex. Several approaches exist to draw such set regions using more complex shapes, however, the resulting diagrams can be difficult to interpret. In this paper we present two novel approaches for simplifying a complex collection of intersecting sets into a strict hierarchy that can be more easily automatically arranged and drawn (Figure 1). In the first approach, we use compact rectangular shapes for drawing each set, attempting to improve the readability of the set intersections. In the second approach, we avoid drawing intersecting set regions by duplicating elements belonging to multiple sets. We compared both of our techniques to the traditional non-convex region technique using five readability tasks. Our results show that the compact rectangular shapes technique was often preferred by experimental subjects even though the use of duplications dramatically improves the accuracy and performance time for most of our tasks. In addition to general set representation our techniques are also applicable to visualization of networks with intersecting clusters of nodes.
在许多常见的数据分析场景中,数据元素在逻辑上被分组到集合中。Venn 和 Euler 风格的图表是这种集合成员关系的常见可视化表示,其中数据元素由标签或图形表示,集合由包围其成员的边界表示。自动生成这样的图表,使得除非对应的集合有非空交集,否则集合区域不会相交,这是一个困难的问题。此外,如果要求区域是连续的和凸的,在某些情况下可能是不可能的。有几种方法可以使用更复杂的形状来绘制这样的集合区域,但是,生成的图表可能难以解释。在本文中,我们提出了两种新颖的方法,将复杂的相交集合简化为严格的层次结构,以便更容易自动排列和绘制(图 1)。在第一种方法中,我们使用紧凑的矩形形状来绘制每个集合,尝试提高集合交点的可读性。在第二种方法中,我们通过复制属于多个集合的元素来避免绘制相交的集合区域。我们使用五个可读性任务将我们的两种技术与传统的非凸区域技术进行了比较。我们的结果表明,即使复制元素极大地提高了我们大多数任务的准确性和性能时间,紧凑的矩形形状技术通常也更受实验对象的喜爱。除了一般的集合表示之外,我们的技术还适用于具有相交节点簇的网络的可视化。