Suppr超能文献

高维标量函数的可视化探索。

Visual exploration of high dimensional scalar functions.

机构信息

University of Utah, USA.

出版信息

IEEE Trans Vis Comput Graph. 2010 Nov-Dec;16(6):1271-80. doi: 10.1109/TVCG.2010.213.

Abstract

An important goal of scientific data analysis is to understand the behavior of a system or process based on a sample of the system. In many instances it is possible to observe both input parameters and system outputs, and characterize the system as a high-dimensional function. Such data sets arise, for instance, in large numerical simulations, as energy landscapes in optimization problems, or in the analysis of image data relating to biological or medical parameters. This paper proposes an approach to analyze and visualizing such data sets. The proposed method combines topological and geometric techniques to provide interactive visualizations of discretely sampled high-dimensional scalar fields. The method relies on a segmentation of the parameter space using an approximate Morse-Smale complex on the cloud of point samples. For each crystal of the Morse-Smale complex, a regression of the system parameters with respect to the output yields a curve in the parameter space. The result is a simplified geometric representation of the Morse-Smale complex in the high dimensional input domain. Finally, the geometric representation is embedded in 2D, using dimension reduction, to provide a visualization platform. The geometric properties of the regression curves enable the visualization of additional information about each crystal such as local and global shape, width, length, and sampling densities. The method is illustrated on several synthetic examples of two dimensional functions. Two use cases, using data sets from the UCI machine learning repository, demonstrate the utility of the proposed approach on real data. Finally, in collaboration with domain experts the proposed method is applied to two scientific challenges. The analysis of parameters of climate simulations and their relationship to predicted global energy flux and the concentrations of chemical species in a combustion simulation and their integration with temperature.

摘要

科学数据分析的一个重要目标是基于系统的样本了解系统或过程的行为。在许多情况下,既可以观察输入参数又可以观察系统输出,并将系统描述为一个高维函数。这种数据集例如出现在大型数值模拟中,作为优化问题中的能量景观,或者在与生物或医学参数相关的图像数据分析中。本文提出了一种分析和可视化此类数据集的方法。所提出的方法结合了拓扑和几何技术,为离散采样的高维标量场提供交互式可视化。该方法依赖于使用点样本云中的近似 Morse-Smale 复形对参数空间进行分割。对于 Morse-Smale 复形的每个晶体,对系统参数相对于输出的回归会在参数空间中产生一条曲线。结果是 Morse-Smale 复形在高维输入域中的简化几何表示。最后,使用维度降低将几何表示嵌入到 2D 中,以提供可视化平台。回归曲线的几何性质使得能够可视化每个晶体的附加信息,例如局部和全局形状、宽度、长度和采样密度。该方法在二维函数的几个合成示例上进行了说明。使用 UCI 机器学习存储库中的数据集的两个用例证明了所提出方法在真实数据上的实用性。最后,与领域专家合作,将所提出的方法应用于两个科学挑战。分析气候模拟的参数及其与预测的全球能量通量的关系,以及在燃烧模拟中化学物质的浓度及其与温度的关系。

相似文献

1
Visual exploration of high dimensional scalar functions.
IEEE Trans Vis Comput Graph. 2010 Nov-Dec;16(6):1271-80. doi: 10.1109/TVCG.2010.213.
2
A topological approach to simplification of three-dimensional scalar functions.
IEEE Trans Vis Comput Graph. 2006 Jul-Aug;12(4):474-84. doi: 10.1109/TVCG.2006.57.
3
Topological spines: a structure-preserving visual representation of scalar fields.
IEEE Trans Vis Comput Graph. 2011 Dec;17(12):1842-51. doi: 10.1109/TVCG.2011.244.
4
Efficient computation of Morse-Smale complexes for three-dimensional scalar functions.
IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1440-7. doi: 10.1109/TVCG.2007.70552.
5
Morse-Smale Regression.
J Comput Graph Stat. 2013 Jan 1;22(1):193-214. doi: 10.1080/10618600.2012.657132.
6
Conforming Morse-Smale Complexes.
IEEE Trans Vis Comput Graph. 2014 Dec;20(12):2595-603. doi: 10.1109/TVCG.2014.2346434.
7
Parallel computation of 2D Morse-Smale complexes.
IEEE Trans Vis Comput Graph. 2012 Oct;18(10):1757-70. doi: 10.1109/TVCG.2011.284.
8
ParaGlide: interactive parameter space partitioning for computer simulations.
IEEE Trans Vis Comput Graph. 2013 Sep;19(9):1499-512. doi: 10.1109/TVCG.2013.61.
9
Parallel sets: interactive exploration and visual analysis of categorical data.
IEEE Trans Vis Comput Graph. 2006 Jul-Aug;12(4):558-68. doi: 10.1109/TVCG.2006.76.
10
Branching and circular features in high dimensional data.
IEEE Trans Vis Comput Graph. 2011 Dec;17(12):1902-11. doi: 10.1109/TVCG.2011.177.

引用本文的文献

1
Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps.
IEEE Trans Vis Comput Graph. 2022 Apr;28(4):1955-1966. doi: 10.1109/TVCG.2020.3022359. Epub 2022 Feb 25.
2
From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches.
IFIP Adv Inf Commun Technol. 2012;377:226-249. doi: 10.1007/978-3-642-32677-6_15.
3
Morse-Smale Regression.
J Comput Graph Stat. 2013 Jan 1;22(1):193-214. doi: 10.1080/10618600.2012.657132.
4
NetMets: software for quantifying and visualizing errors in biological network segmentation.
BMC Bioinformatics. 2012;13 Suppl 8(Suppl 8):S7. doi: 10.1186/1471-2105-13-S8-S7. Epub 2012 May 18.

本文引用的文献

1
Analyzing and tracking burning structures in lean premixed hydrogen flames.
IEEE Trans Vis Comput Graph. 2010 Mar-Apr;16(2):248-60. doi: 10.1109/TVCG.2009.69.
2
A topological hierarchy for functions on triangulated surfaces.
IEEE Trans Vis Comput Graph. 2004 Jul-Aug;10(4):385-96. doi: 10.1109/TVCG.2004.3.
3
Efficient computation of Morse-Smale complexes for three-dimensional scalar functions.
IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1440-7. doi: 10.1109/TVCG.2007.70552.
4
Topologically clean distance fields.
IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1432-9. doi: 10.1109/TVCG.2007.70603.
5
Topological landscapes: a terrain metaphor for scientific data.
IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1416-23. doi: 10.1109/TVCG.2007.70601.
6
Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities.
IEEE Trans Vis Comput Graph. 2006 Sep-Oct;12(5):1053-60. doi: 10.1109/TVCG.2006.186.
7
Reducing the dimensionality of data with neural networks.
Science. 2006 Jul 28;313(5786):504-7. doi: 10.1126/science.1127647.
8
A topological approach to simplification of three-dimensional scalar functions.
IEEE Trans Vis Comput Graph. 2006 Jul-Aug;12(4):474-84. doi: 10.1109/TVCG.2006.57.
9
Nonlinear dimensionality reduction by locally linear embedding.
Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323.
10
A global geometric framework for nonlinear dimensionality reduction.
Science. 2000 Dec 22;290(5500):2319-23. doi: 10.1126/science.290.5500.2319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验