Athawale Tushar M, Maljovec Dan, Yan Lin, Johnson Chris R, Pascucci Valerio, Wang Bei
IEEE Trans Vis Comput Graph. 2022 Apr;28(4):1955-1966. doi: 10.1109/TVCG.2020.3022359. Epub 2022 Feb 25.
Morse complexes are gradient-based topological descriptors with close connections to Morse theory. They are widely applicable in scientific visualization as they serve as important abstractions for gaining insights into the topology of scalar fields. Data uncertainty inherent to scalar fields due to randomness in their acquisition and processing, however, limits our understanding of Morse complexes as structural abstractions. We, therefore, explore uncertainty visualization of an ensemble of 2D Morse complexes that arises from scalar fields coupled with data uncertainty. We propose several statistical summary maps as new entities for quantifying structural variations and visualizing positional uncertainties of Morse complexes in ensembles. Specifically, we introduce three types of statistical summary maps - the probabilistic map, the significance map, and the survival map - to characterize the uncertain behaviors of gradient flows. We demonstrate the utility of our proposed approach using wind, flow, and ocean eddy simulation datasets.
莫尔斯复形是基于梯度的拓扑描述符,与莫尔斯理论有密切联系。它们在科学可视化中广泛适用,因为它们是深入了解标量场拓扑结构的重要抽象。然而,由于标量场在采集和处理过程中的随机性所固有的数据不确定性,限制了我们将莫尔斯复形作为结构抽象的理解。因此,我们探索由标量场与数据不确定性相结合而产生的二维莫尔斯复形集合的不确定性可视化。我们提出了几种统计汇总图,作为量化结构变化和可视化莫尔斯复形集合中位置不确定性的新实体。具体来说,我们引入了三种类型的统计汇总图——概率图、显著性图和生存图——来表征梯度流的不确定行为。我们使用风、流和海洋涡旋模拟数据集展示了我们提出的方法的实用性。