Unité Mixte de Physique CNRS/Thales and Université Paris Sud 11, Palaiseau, France.
Nat Commun. 2010 Apr 12;1:8. doi: 10.1038/ncomms1006.
Spin-polarized current can excite the magnetization of a ferromagnet through the transfer of spin angular momentum to the local spin system. This pure spin-related transport phenomenon leads to alluring possibilities for the achievement of a nanometer scale, complementary metal oxide semiconductor-compatible, tunable microwave generator that operates at low bias for future wireless communication applications. Microwave emission generated by the persistent motion of magnetic vortices induced by a spin-transfer effect seems to be a unique manner to reach appropriate spectral linewidth. However, in metallic systems, in which such vortex oscillations have been observed, the resulting microwave power is much too small. In this study, we present experimental evidence of spin-transfer-induced vortex precession in MgO-based magnetic tunnel junctions, with an emitted power that is at least one order of magnitude stronger and with similar spectral quality. More importantly and in contrast to other spin-transfer excitations, the thorough comparison between experimental results and analytical predictions provides a clear textbook illustration of the mechanism of spin-transfer-induced vortex precession.
自旋极化电流可以通过将自旋角动量传递到局部自旋系统来激发铁磁体的磁化。这种纯粹与自旋相关的输运现象为实现纳米级、与互补金属氧化物半导体兼容、可调谐的微波发生器提供了诱人的可能性,该发生器在低偏置下工作,适用于未来的无线通信应用。由自旋转移效应引起的磁涡旋的持续运动产生的微波发射似乎是达到适当光谱线宽的一种独特方式。然而,在已经观察到这种涡旋振荡的金属系统中,产生的微波功率小得多。在这项研究中,我们提供了基于 MgO 的磁性隧道结中自旋转移诱导的涡旋进动的实验证据,其发射功率至少强一个数量级,且具有相似的光谱质量。更重要的是,与其他自旋转移激发相比,实验结果与分析预测之间的彻底比较提供了自旋转移诱导的涡旋进动机制的清晰的教材示例。