Suppr超能文献

从单突变数据推断 PDZ 结构域多突变体结合偏好。

Inferring PDZ domain multi-mutant binding preferences from single-mutant data.

机构信息

Department of Neurology, Mount Sinai School of Medicine, Center for Translational Systems Biology, New York, New York, United States of America.

出版信息

PLoS One. 2010 Sep 30;5(9):e12787. doi: 10.1371/journal.pone.0012787.

Abstract

Many important cellular protein interactions are mediated by peptide recognition domains. The ability to predict a domain's binding specificity directly from its primary sequence is essential to understanding the complexity of protein-protein interaction networks. One such recognition domain is the PDZ domain, functioning in scaffold proteins that facilitate formation of signaling networks. Predicting the PDZ domain's binding specificity was a part of the DREAM4 Peptide Recognition Domain challenge, the goal of which was to describe, as position weight matrices, the specificity profiles of five multi-mutant ERBB2IP-1 domains. We developed a method that derives multi-mutant binding preferences by generalizing the effects of single point mutations on the wild type domain's binding specificities. Our approach, trained on publicly available ERBB2IP-1 single-mutant phage display data, combined linear regression-based prediction for ligand positions whose specificity is determined by few PDZ positions, and single-mutant position weight matrix averaging for all other ligand columns. The success of our method as the winning entry of the DREAM4 competition, as well as its superior performance over a general PDZ-ligand binding model, demonstrates the advantages of training a model on a well-selected domain-specific data set.

摘要

许多重要的细胞蛋白相互作用是由肽识别结构域介导的。能够直接从其一级序列预测结构域的结合特异性对于理解蛋白质-蛋白质相互作用网络的复杂性至关重要。PDZ 结构域就是这样一种识别结构域,它存在于支架蛋白中,有助于信号网络的形成。预测 PDZ 结构域的结合特异性是 DREAM4 肽识别结构域挑战赛的一部分,该挑战赛的目标是描述 ERBB2IP-1 五个多突变体结构域的特异性概况。我们开发了一种方法,通过概括单突变对野生型结构域结合特异性的影响,推导出多突变体的结合偏好。我们的方法基于线性回归的预测,用于特异性由少数 PDZ 位置决定的配体位置,以及所有其他配体列的单突变体位置权重矩阵平均。我们的方法作为 DREAM4 竞赛的获胜者,以及其优于一般 PDZ-配体结合模型的性能,证明了在经过精心选择的特定领域数据集上训练模型的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52ed/2956758/243f79d8c402/pone.0012787.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验