Suppr超能文献

同时预测PDZ结构域与肽相互作用的结合自由能和特异性

Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions.

作者信息

Crivelli Joseph J, Lemmon Gordon, Kaufmann Kristian W, Meiler Jens

机构信息

Department of Chemistry, Vanderbilt University, Station B #351822, Nashville, TN, 37235, USA.

出版信息

J Comput Aided Mol Des. 2013 Dec;27(12):1051-65. doi: 10.1007/s10822-013-9696-9. Epub 2013 Dec 5.

Abstract

Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on X-ray crystal structures and comparative modeling with ROSETTA. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several ROSETTA protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions.

摘要

蛋白质结构域与线性肽之间的相互作用是许多生物学过程的基础。在这些相互作用中,PDZ结构域对C末端肽的识别是最为普遍的相互作用之一。在这项工作中,我们提出了一个用于PDZ结构域 - 肽相互作用的数学模型,该模型能够基于X射线晶体结构以及使用ROSETTA进行的比较建模来预测结合亲和力和特异性。我们使用一个大型噬菌体展示数据集开发了我们的数学模型,该数据集描述了野生型PDZ结构域和91个单突变体的结合特异性,以及野生型PDZ结构域与28种不同肽结合的亲和力数据。通过几个ROSETTA协议进行结构优化,其中最精确的协议包括灵活的肽对接以及侧链重新包装和主链最小化的几次迭代。我们的研究结果强调了主链灵活性以及侧链 - 侧链氢键在准确预测相互作用中的能量贡献的重要性。我们还确定,随着肽在N末端方向上长度的增加,预测PDZ结构域 - 肽相互作用变得越来越具有挑战性。在训练数据集中,预测的结合能与通过量热法得出的结合能相关,并且界面位置的单突变引入的特异性开关也得到了重现。在独立测试中,我们表现最佳的协议能够在一个数量级内很好地预测解离常数,并且在与先前研究相同的精度水平上预测特异性概况。据我们所知,这种方法代表了第一种用于预测PDZ结构域 - 肽相互作用的亲和力和特异性的综合协议。

相似文献

1
Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions.
J Comput Aided Mol Des. 2013 Dec;27(12):1051-65. doi: 10.1007/s10822-013-9696-9. Epub 2013 Dec 5.
2
A physical model for PDZ-domain/peptide interactions.
J Mol Model. 2011 Feb;17(2):315-24. doi: 10.1007/s00894-010-0725-5. Epub 2010 May 12.
3
An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.
PLoS One. 2013 Aug 8;8(8):e71340. doi: 10.1371/journal.pone.0071340. eCollection 2013.
4
Hidden dynamic allostery in a PDZ domain.
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18249-54. doi: 10.1073/pnas.0904492106. Epub 2009 Oct 14.
5
Molecular Dynamics Simulations of Wild Type and Mutants of SAPAP in Complexed with Shank3.
Int J Mol Sci. 2019 Jan 8;20(1):224. doi: 10.3390/ijms20010224.
8
NMR studies of interactions between C-terminal tail of Kir2.1 channel and PDZ1,2 domains of PSD95.
Biochemistry. 2007 May 8;46(18):5315-22. doi: 10.1021/bi062228q. Epub 2007 Apr 17.
9
10
Characterization of PDZ domain-peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses.
J Comput Aided Mol Des. 2011 Oct;25(10):947-58. doi: 10.1007/s10822-011-9474-5. Epub 2011 Oct 1.

引用本文的文献

1
Computational design of selective peptides to discriminate between similar PDZ domains in an oncogenic pathway.
J Mol Biol. 2015 Jan 30;427(2):491-510. doi: 10.1016/j.jmb.2014.10.014. Epub 2014 Oct 30.

本文引用的文献

1
Design of a phosphorylatable PDZ domain with peptide-specific affinity changes.
Structure. 2013 Jan 8;21(1):54-64. doi: 10.1016/j.str.2012.10.007. Epub 2012 Nov 15.
2
A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage.
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3317-22. doi: 10.1073/pnas.1113761109. Epub 2012 Feb 17.
3
Characterization of PDZ domain-peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses.
J Comput Aided Mol Des. 2011 Oct;25(10):947-58. doi: 10.1007/s10822-011-9474-5. Epub 2011 Oct 1.
4
RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite.
PLoS One. 2011;6(6):e20161. doi: 10.1371/journal.pone.0020161. Epub 2011 Jun 24.
5
Sequence-specific long range networks in PSD-95/discs large/ZO-1 (PDZ) domains tune their binding selectivity.
J Biol Chem. 2011 Aug 5;286(31):27167-75. doi: 10.1074/jbc.M111.239541. Epub 2011 Jun 8.
7
Inferring PDZ domain multi-mutant binding preferences from single-mutant data.
PLoS One. 2010 Sep 30;5(9):e12787. doi: 10.1371/journal.pone.0012787.
8
Structure-based prediction of protein-peptide specificity in Rosetta.
Proteins. 2010 Dec;78(16):3437-49. doi: 10.1002/prot.22851. Epub 2010 Oct 15.
9
Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains.
J Mol Biol. 2010 Sep 17;402(2):460-74. doi: 10.1016/j.jmb.2010.07.032. Epub 2010 Jul 21.
10
A physical model for PDZ-domain/peptide interactions.
J Mol Model. 2011 Feb;17(2):315-24. doi: 10.1007/s00894-010-0725-5. Epub 2010 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验