Suppr超能文献

用于模拟与复杂三维刚体的流固相互作用的曲线浸入边界法

Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.

作者信息

Borazjani Iman, Ge Liang, Sotiropoulos Fotis

机构信息

St. Anthony Falls Laboratory, University of Minnesota, 2 Third Avenue SE, Minneapolis, MN 55414.

出版信息

J Comput Phys. 2008 Aug 10;227(16):7587-7620. doi: 10.1016/j.jcp.2008.04.028.

Abstract

The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI algorithm. The stabilizing role of under-relaxation is also clarified and an upper bound of the required for stability under-relaxation coefficient is derived.

摘要

Ge和Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782-1809] 提出的尖锐界面CURVIB方法被扩展,用于模拟涉及经历大结构位移的复杂三维刚体的流固耦合 (FSI) 问题。FSI求解器采用分区FSI求解方法,并实现了松耦合和强耦合策略。浸没物体与流体之间的界面用拉格朗日网格离散化,并采用显式前沿追踪方法进行跟踪。开发了一种高效的光线追踪算法,以快速识别背景网格与运动物体之间的关系。针对两个FSI问题进行了数值实验:弹性安装圆柱体的涡激振动以及生理条件下通过双叶机械心脏瓣膜的流动。对于这两种情况,计算结果与基准模拟和实验测量结果都非常吻合。数值实验表明,结构的特性(质量、几何形状)和局部流动条件在确定FSI算法的稳定性方面都可以发挥重要作用。在某些条件下,即使采用强耦合FSI,也会出现无条件不稳定的迭代方案。然而,对于这种情况,将强耦合迭代与欠松弛相结合,并结合艾特肯加速技术,被证明可以有效地解决稳定性问题。进行了理论分析以解释数值实验的结果。结果表明,附加质量与结构质量的比值以及流体施加在结构上的力或力矩的局部时间变化率的符号决定了FSI算法的稳定性和收敛性。还阐明了欠松弛的稳定作用,并推导了稳定性所需的欠松弛系数的上限。

相似文献

1
Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies.
J Comput Phys. 2008 Aug 10;227(16):7587-7620. doi: 10.1016/j.jcp.2008.04.028.
3
A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
J Comput Phys. 2023 Sep 1;488. doi: 10.1016/j.jcp.2023.112174. Epub 2023 Apr 24.
4
A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows.
Comput Fluids. 2013 Apr 1;77:76-96. doi: 10.1016/j.compfluid.2013.02.017.
5
A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
J Comput Phys. 2021 Oct 15;443. doi: 10.1016/j.jcp.2021.110442. Epub 2021 May 18.
7
A novel mono-physics particle-based approach for the simulation of cardiovascular fluid-structure interaction problems.
Comput Methods Programs Biomed. 2024 Mar;245:108034. doi: 10.1016/j.cmpb.2024.108034. Epub 2024 Jan 15.
9
On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
J Comput Phys. 2022 May 15;457. doi: 10.1016/j.jcp.2022.111042. Epub 2022 Feb 9.

引用本文的文献

1
Shape transitions of red blood cell under oscillatory flows in microchannels.
AIP Adv. 2025 Aug 11;15(8):085010. doi: 10.1063/5.0278720. eCollection 2025 Aug.
2
An immersed peridynamics model of fluid-structure interaction accounting for material damage and failure.
J Comput Phys. 2023 Nov 15;493. doi: 10.1016/j.jcp.2023.112466. Epub 2023 Sep 1.
3
A reduced 3D-0D fluid-structure interaction model of the aortic valve that includes leaflet curvature.
Biomech Model Mechanobiol. 2025 Aug;24(4):1169-1189. doi: 10.1007/s10237-025-01960-9. Epub 2025 Jun 1.
4
Simulating cardiac fluid dynamics in the human heart.
PNAS Nexus. 2024 Sep 10;3(10):pgae392. doi: 10.1093/pnasnexus/pgae392. eCollection 2024 Oct.
5
Fluid-structure interaction simulation of mechanical aortic valves: a narrative review exploring its role in total product life cycle.
Front Med Technol. 2024 Jul 1;6:1399729. doi: 10.3389/fmedt.2024.1399729. eCollection 2024.
7
[Experimental and numerical investigation of fluid-particle-interactions in water].
Osterr Wasser Abfallwirtsch. 2023;75(7-8):442-448. doi: 10.1007/s00506-023-00960-2. Epub 2023 Jun 7.
8
Lagrangian dynamics of contaminant particles released from a point source in New York City.
Phys Fluids (1994). 2022 Jul;34(7):073303. doi: 10.1063/5.0098503. Epub 2022 Jul 5.
9
Fluid-Structure Interaction Analysis on the Influence of the Aortic Valve Stent Leaflet Structure in Hemodynamics.
Front Physiol. 2022 May 13;13:904453. doi: 10.3389/fphys.2022.904453. eCollection 2022.
10
A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
J Comput Phys. 2021 Oct 15;443. doi: 10.1016/j.jcp.2021.110442. Epub 2021 May 18.

本文引用的文献

2
Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure.
Ann Biomed Eng. 2006 Oct;34(10):1519-34. doi: 10.1007/s10439-006-9194-5. Epub 2006 Sep 30.
3
Flow in prosthetic heart valves: state-of-the-art and future directions.
Ann Biomed Eng. 2005 Dec;33(12):1689-94. doi: 10.1007/s10439-005-8759-z.
4
Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics.
Ann Biomed Eng. 2004 Nov;32(11):1471-83. doi: 10.1114/b:abme.0000049032.51742.10.
5
Fluid mechanics of heart valves.
Annu Rev Biomed Eng. 2004;6:331-62. doi: 10.1146/annurev.bioeng.6.040803.140111.
6
A three-dimensional computational analysis of fluid-structure interaction in the aortic valve.
J Biomech. 2003 Jan;36(1):103-12. doi: 10.1016/s0021-9290(02)00244-0.
7
A numerical simulation of mechanical heart valve closure fluid dynamics.
J Biomech. 2002 Jul;35(7):881-92. doi: 10.1016/s0021-9290(02)00056-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验