Suppr超能文献

微通道中振荡流作用下红细胞的形状转变

Shape transitions of red blood cell under oscillatory flows in microchannels.

作者信息

Akerkouch Lahcen, Le Trung Bao

机构信息

Department of Civil, Construction, and Environmental Engineering North Dakota State University, 1410 14th N, Fargo, North Dakota 58102, USA.

出版信息

AIP Adv. 2025 Aug 11;15(8):085010. doi: 10.1063/5.0278720. eCollection 2025 Aug.

Abstract

This paper aims to examine the ability to control a model of red blood cell (RBC) dynamics and the associated extracellular flow patterns in microfluidic channels via oscillatory flows. Our computational approach employs a hybrid continuum-particle coupling, in which the cell membrane and cytosol fluid are modeled using the dissipative particle dynamics method. The blood plasma is modeled as an incompressible fluid via the immersed boundary method. This coupling is novel because it provides an accurate description of RBC dynamics while the extracellular flow patterns around the RBCs are also captured in detail. Our coupling methodology is validated with available experimental and computational data in the literature and shows excellent agreement. We explore the controlling regimes by varying the shape of the oscillatory flow waveform at the channel inlet. Our simulation results show that a host of RBC morphological dynamics emerges depending on the channel geometry, the incoming flow waveform, and the RBC initial location. Complex dynamics of RBC are induced by the flow waveform. Our results show that the RBC shape is strongly dependent on its initial location. Our results suggest that the controlling of oscillatory flows can be used to induce specific morphological shapes of RBCs and the surrounding fluid patterns in bio-engineering applications.

摘要

本文旨在研究通过振荡流控制微流控通道中红细胞(RBC)动力学模型及相关细胞外流动模式的能力。我们的计算方法采用了连续介质 - 粒子混合耦合,其中细胞膜和细胞质流体采用耗散粒子动力学方法进行建模。血浆通过浸入边界法被建模为不可压缩流体。这种耦合方式很新颖,因为它既能准确描述红细胞动力学,又能详细捕捉红细胞周围的细胞外流动模式。我们的耦合方法通过文献中可用的实验和计算数据进行了验证,结果显示出极佳的一致性。我们通过改变通道入口处振荡流波形的形状来探索控制机制。我们的模拟结果表明,根据通道几何形状、流入流波形和红细胞初始位置,会出现一系列红细胞形态动力学。流动波形会诱导红细胞产生复杂的动力学。我们的结果表明,红细胞形状强烈依赖于其初始位置。我们的结果表明,在生物工程应用中,振荡流的控制可用于诱导红细胞特定的形态形状以及周围的流体模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验