Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland.
J Phys Chem B. 2010 Nov 25;114(46):14815-20. doi: 10.1021/jp104444q. Epub 2010 Oct 28.
In this work, we investigated the relaxation dynamics of supercooled and glassy glibenclamide drug in conditions of high compression using broadband dielectric spectroscopy. Glibenclamide, an oral antidiabetic drug, belongs to the group of organic compounds which reveal amide-imidic acid tautomerism. Our studies reveal that application of pressure does not change the shape of dielectric loss spectrum of this pharmaceutical, whereas it probably influences the tautomers' concentration in the examined sample. Because every tautomer may influence the unique physical properties like the glass transition temperature, we have also focused on the analysis of pressure dependence of fragility, m(P)(P). In contradiction to the others active pharmaceutical ingredients (API) like verapamil hydrochloride, indomethacin or ibuprofen, in the case of glibenclamide drug slightly increasing trend of fragility was observed. On the other hand, pressure measurements confirmed the validity of suggestions concerning the origins of two secondary relaxations in glibenclamide presented in our previous paper (Wojnarowska et al. Mol. Pharmaceutics 2010, 7, 1692-1707). It is worth noting that until now the system which reveals tautomerism has never been analyzed in condition of high compression.
在这项工作中,我们使用宽带介电谱研究了在高压条件下,处于过冷和玻璃态的格列本脲药物的弛豫动力学。格列本脲是一种口服降糖药,属于酰胺-亚胺酸互变异构体的有机化合物。我们的研究表明,压力的应用不会改变这种药物的介电损耗谱的形状,而可能会影响所研究样品中互变异构体的浓度。因为每个互变异构体可能会影响独特的物理性质,如玻璃化转变温度,我们还集中分析了压力对脆性的依赖性,m(P)(P)。与其他活性药物成分(API)如盐酸维拉帕米、吲哚美辛或布洛芬不同,在格列本脲药物的情况下,观察到脆性略有增加的趋势。另一方面,压力测量证实了我们在之前的论文(Wojnarowska 等人,《分子药剂学》2010 年,7 期,1692-1707)中提出的格列本脲中两种次级松弛起源的建议的有效性。值得注意的是,到目前为止,从未在高压条件下分析过显示互变异构的系统。