Suppr超能文献

放射免疫疗法的当前概念与未来方向

Current concepts and future directions in radioimmunotherapy.

作者信息

Lin Frank I, Iagaru Andrei

机构信息

Division of Nuclear Medicine, Department of Radiology-Nuclear Medicine, Stanford University Medical Center, Stanford, CA 94305-5281, USA.

出版信息

Curr Drug Discov Technol. 2010 Dec;7(4):253-62. doi: 10.2174/157016310793360684.

Abstract

Radioimmunotherapy relies on the principles of immunotherapy, but expands the cytotoxic effects of the antibody by complexing it with a radiation-emitting particle. If we consider radioimmunotherapy as a step beyond immunotherapy of cancer, the step was prompted by the (relative) failure of the latter. The conventional way to explain the failure is a lack of intrinsic killing effect and a lack of penetration into poorly vascularized tumor masses. The addition of a radioactive label (usually a β-emitter) to the antibody would improve both. Radiation is lethal and the type of radiation used (beta rays) has a sufficient range to overcome the lack of antibody penetration. At present, the most successful (and FDA approved) radioimmunotherapy agents for lymphomas are anti-CD20 monoclonal antibodies. Rituximab (Rituxan(®)) is a chimeric antibody, used as a non-radioactive antibody and to pre-load the patient when Zevalin(®) is used. Zevalin(®) is the Yttrium-90 ((90)Y) or Indium-111 ((111)In) labeled form of Ibritumomab Tiuxetan. Bexxar(®) is the Iodine-131 ((131)I) labeled form of Tositumomab. Ibritumomab Tiuxetan and Tositumomab are murine anti-CD20 monoclonal antibodies, not chimeric antibodies. Promising research is being done to utilize radioimmunotherapy earlier in the treatment algorithm for lymphoma, including as initial, consolidation, and salvage therapies. However, despite more than 8 years since initial regulatory approval, radioimmunotherapy still has not achieved widespread use due to a combination of medical, scientific, logistic, and financial barriers. Other experimental uses for radioimmunotherapy include other solid tumors to treat infections. Optimization can potentially be done with pre-targeting and bi-specific antibodies. Alpha particle and Auger electron emitters show promise as future radioimmunotherapy agents but are mostly still in pre-clinical stages.

摘要

放射免疫疗法依赖于免疫疗法的原理,但通过将抗体与发射辐射的粒子复合来扩大其细胞毒性作用。如果我们将放射免疫疗法视为癌症免疫疗法的进一步发展,那么这一步是由后者(相对)的失败所推动的。解释这种失败的传统方式是缺乏内在杀伤作用以及无法渗透到血管化不良的肿瘤块中。在抗体上添加放射性标记(通常是β发射体)将改善这两个方面。辐射具有致死性,并且所使用的辐射类型(β射线)具有足够的射程来克服抗体渗透不足的问题。目前,用于淋巴瘤的最成功(且已获美国食品药品监督管理局批准)的放射免疫疗法药物是抗CD20单克隆抗体。利妥昔单抗(美罗华(®))是一种嵌合抗体,用作非放射性抗体,并在使用泽瓦林(®)时用于预先给患者用药。泽瓦林(®)是钇-90((90)Y)或铟-111((111)In)标记的替伊莫单抗。贝沙罗汀(®)是碘-131((131)I)标记的托西莫单抗。替伊莫单抗和托西莫单抗是鼠抗CD20单克隆抗体,而非嵌合抗体。目前正在进行有前景的研究,以便在淋巴瘤的治疗方案中更早地使用放射免疫疗法,包括作为初始、巩固和挽救疗法。然而,尽管自最初获得监管批准以来已有8年多时间,但由于医学、科学、后勤和财务等多方面的障碍,放射免疫疗法仍未得到广泛应用。放射免疫疗法的其他实验用途包括治疗其他实体瘤和感染。通过预靶向和双特异性抗体可能实现优化。α粒子和俄歇电子发射体作为未来的放射免疫疗法药物显示出前景,但大多仍处于临床前阶段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验